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Abstract

In this work, we study the active sequential hypothesis testing problem, also known
as pure exploration, where the goal is to actively control a data collection process
to efficiently identify the correct hypothesis underlying a decision problem. While
relevant across multiple domains, devising adaptive exploration strategies remains
challenging, particularly due to difficulties in encoding appropriate inductive bi-
ases. Existing Reinforcement Learning (RL)-based methods often underperform
when relevant information structures are inadequately represented, whereas more
complex methods, like Best Arm Identification (BAI) techniques, may be difficult
to devise and typically rely on explicit modeling assumptions. To address these
limitations, we introduce In-Context Pure Exploration (ICPE), an in-context learn-
ing approach that uses Transformers to learn exploration strategies directly from
experience. ICPE combines supervised learning and reinforcement learning to
identify and exploit latent structure across related tasks, without requiring prior
assumptions. Numerical results across diverse synthetic and semi-synthetic bench-
marks highlight ICPE’s capability to achieve robust performance performance
in deterministic, stochastic, and structured settings. These results demonstrate
ICPE’s ability to match optimal instance-dependent algorithms using only deep
learning techniques, making it a practical and general approach to data-efficient
exploration.

1 Introduction

Modern artificial intelligence systems have achieved remarkable performance across specialized tasks
such as image classification [59], Super-human board-game play [104], protein-structure prediction
[51] and large-scale language modelling [14]. Yet, there is still a lack in understanding how to
autonomously discover meta-skills fundamental for sequential decision making, such as active testing
or active learning [21, 23].

Consider an agent tasked with sequentially selecting samples to quickly improve its understanding
of an underlying phenomenon. When the decision maker can exert some control over the collected
samples’ information content, this is a problem also known as the active sequential hypothesis testing
problem [21, 37, 81, 82, 77] or pure exploration problem [27, 28, 29]. Active hypothesis testing has
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Figure 1: Starting from a blank canvas (left), ICPE sequentially chooses a region of pixel that is
expected to maximally reduce the posterior entropy over classes, until it is confident to have inferred
the true class (right).

become increasingly important nowadays, with applications ranging from medical diagnostics [12],
image identification [110], recommender systems [93], etc.

Nonetheless, devising an adaptive data collection strategy is notoriously difficult and highly problem-
specific. A source of issues remains the difficulty to encode the right inductive-biases in the model.
For example, consider a tutor choosing which question to ask a student: each answer gives immediate
feedback and hints at concepts they’ve (or haven’t) mastered. All these answers can reveal regularities
such as “if a student misses x, they usually also miss y”. But how can we autonomously learn
and encode this information so that we can efficiently pinpoint the student’s knowledge gaps? A
different, but relevant example, is that of Multi-Armed Bandit (MAB) problems [109, 62], where
each action provides a random reward: how can we autonomously learn and exploit those situations
where sampling one action provides indirect information about others, or where sequences of actions
must be selected to uncover hidden information efficiently? Effective exploration requires exploiting
the structural properties of the problem, but current approaches often necessitate explicitly specifying
these biases, significantly limiting adaptability and efficiency.

In this paper, we address the question: how can sequential decision-making agents autonomously
discover and leverage hidden structure to enhance active exploration for hypothesis testing? We
introduce In-Context Pure Explorer (ICPE), a novel method combining Supervised Learning and
Deep RL [41, 78] , which builds on the in-context learning and sequence modeling capabilities of
Transformers [64]–a meta-learning approach that uncovers underlying shared structure across a class
of problemsM [103, 11]. We hypothesize that these sequential models can learn to map histories of
data to effective exploration strategies, leveraging their sequence-prediction capabilities.

ICPE operates by integrating two complementary neural networks: an inference (I) network, trained
via supervised learning to infer the true hypothesis given current data, and an exploration (π) network,
trained through reinforcement learning to select actions optimizing the inference accuracy of the I
network. Crucially, this dual-network architecture, combined with the in-context learning abilities of
Transformers, allows ICPE to learn from experience [105] how to autonomously identify and exploit
regularities, enabling efficient exploration.

We validate ICPE through extensive synthetic and semi-synthetic experiments, demonstrating its
ability to efficiently explore deterministic, stochastic, and structured environments. In particular,
these results show that ICPE achieves performance comparable to optimal instance-dependent Best
Arm Identification (BAI) algorithms [36, 5], without requiring explicit problem-specific exploration
strategies that often involve solving complex optimization problems. Thanks to the in-context
capability of ICPE, it is effectively discovering active sampling techniques [86], that at test time does
not need much more computation than a forward pass. Consequently, ICPE emerges as a practical
applicable method for data-efficient exploration.

1.1 Related Work

We now provide a brief overview of the related work and refer the reader to appendix A for an
extended discussion. The problem of active sequential hypothesis testing [21, 37, 65, 81, 82, 77, 34],
in which a learner is tasked with adaptively performing a sequence of actions to identify an unknown
property of the environment, is closely related to the exploration problem in Reinforcement Learning
(RL) [109], where an agent needs to identify the optimal policy. This exploration problem has
long centered on regret minimization [109], with techniques based on Upper-Confidence Bounds
[7, 8, 16, 61, 6], posterior-sampling [56, 88, 100, 42] and Information-Directed Sampling (IDS) [102];
yet these schemes assume that minimizing regret is the sole objective and falter in identification
problems. A more closely related setting is that of pure exploration in bandits and Markov Decision
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Processes (MDPs), settings known as Best Arm/Policy Identification (BAI/BPI) [5, 36, 27, 2, 96, 98].
In these problems the samples collected by the agent are no longer perceived as rewards, and
the agent must actively optimize its exploration strategy to identify the optimal policy. BAI/BPI
reframe the task as sequential hypothesis testing, yielding instance-adaptive algorithms in fixed-
confidence settings such as Track-and-Stop (TaS) [36]. A similar setting is that of BAI/BPI with
fixed horizon, which is, however, less understood [115, 4, 83] compared to the fixed-confidence one.
However, while BAI strategy are powerful, they may be suboptimal when the underlying information
structure is not adequately captured within the hypothesis testing framework. Hence, the issue
of leveraging hidden environmental information, or problem with complex information structure
remains a difficult problem. Although IDS and BAI offer frameworks to account for such structure,
extending these approaches to Deep Learning is difficult, particularly when the information structure
is unknown. Recently Transformers [113, 18] have demonstrated remarkable in-context learning
capabilities [14, 35]. In-context learning [74] is a form of meta-RL [9], where agents can solve new
tasks without updating any parameters by simply conditioning on additional context, such as their
action-observation histories. Building on this ability, [64] recently showed that Transformers can
be trained in a supervised manner using offline data to mimic posterior sampling in reinforcement
learning. In [25] the authors present ICEE (In-Context Exploration Exploitation). ICEE uses
Transformer architectures to perform in-context exploration-exploration for RL. ICEE tackles this
challenge by expanding the framework of return conditioned RL with in-context learning [18, 32].
Return conditioned learning is a type of technique where the agent learns the return-conditional
distribution of actions in each state. Actions are then sampled from the distribution of actions that
receive high return [107, 60]. Lastly, we note the important contribution of RL2 [31], which proposes
to represent an RL policy as the hidden state of an RNN, whose weights are learned via RL. ICPE
employs a similar idea, but focuses on a different objective (identification), and splits the process
into a supervised inference network that provides rewards to an RL-trained transformer network that
selects actions to maximize information gain.

2 Learning to Explore: In-Context Pure Exploration

In this work, we introduce ICPE, an end-to-end deep-learning framework that combines sequential
architecture with supervised and reinforcement learning to automatically discover efficient exploration
policies for active sequential hypothesis testing. Instead of explicitly encoding inductive biases, we
use transformers to let the agent autonomously infer the problem structure from experiences. We
next provide an informal problem statement, followed by technical details.

Informal problem statement. Imagine a doctor sequentially ordering medical tests to produce a
patient diagnosis Ĥ ∈ HealthConditions. Each test result provides clues, helping the doctor narrow
down which disease the patient truly has. Here, the doctor acts like an agent, using a sampling strategy
π to choose each test possibly depending on previous tests and test results - or change to health
conditions to efficiently gather information about the patient (the environment M ). The patient’s test
results are used by the doctor to produce a hypothesis Ĥ . A good sampling strategy maximizes the
probability that Ĥ = H∗ where H∗ is the true health condition of the patient. In the following, we
consider a general probabilistic, or Bayesian, formulation in which uncertain quantities are modeled
as random variables. Specifically, we adopt an in-context learning approach [64] and assume that
M (e.g., the patient) is drawn from a patient environment classM—a set of problems sharing some
common characteristics—according to a distribution P(M).

Then, the central question we seek to answer is the following one:

Given an environment M drawn from P(M), how can we learn a sampling strategy π that
collects data D from M so the agent can reliably infer H⋆ solely from D?

Another relevant example is that of Best-Arm Identification in MAB problems [36]. Recall that
in a MAB problem the decision maker can choose between K different actions a1, . . . , aK (we
also say arms) at each time-step. Upon selecting an action a at time t, it observes a random
reward rt distributed according to a distribution νat . In BAI the goal is to identify the best action
a⋆ = argmaxa ER∼νa

[R] as quickly as possible (hence H⋆ = a⋆). While several algorithms have
been provided for different settings [106, 49, 97, 57, 90], a major issue is that the algorithm design can
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drastically change if the assumptions change. Moreover, it is difficult to design efficient techniques for
more complex settings such as MDPs (in fact, the problem becomes non-convex [70, 95]). Therefore,
in this work we address the open question of whether it is possible to learn efficient exploration
strategies directly from experience, avoiding the process of designing a BAI algorithm.

2.1 Problem Formulation

We now give a precise statement of the overall objective that we study in this paper. We begin with
describing what is an environment, the set of assumptions, and the problems that we investigate.

Environment, sampling policy and hypotheses. We consider a model class of environmentsM
and a distribution P(M) ∈ ∆(M) from which the true environment M is sampled from. We model
an environment as a tuple M = (X ,A, P, ρ), where X is a set of possible observations, A is a finite
set of actions, P = (Pt)t∈N denotes the transition functions, with Pt : (X × A)t → ∆(X ) and
ρ ∈ ∆(X ) denotes the initial observation distribution. All the environments in a classM share
the same set of observations X and set of actions A. The learner interacts with the environment in
a sequential manner: (1) an initial observation x1 ∼ ρ is sampled from X ; (2) at time-step t, the
learner chooses an action at and observes the next observation xt+1 ∼ Pt(·|Dt, at), meaning that
xt+1 is drawn independently from Pt(·|Dt, at) given a trajectory Dt = (x1, a1, . . . , xt−1, at−1, xt).
Formally, the learner uses a randomized policy π = (πt)t∈N, which is a sequence of deterministic
functions, to select actions: action at is selected by sampling independently from πt(Dt) (with Dt

being a random variable), where πt(Dt) specifies a probability distribution over A. Finally, for each
environment M , we assume the existence of a task-specific ground-truth hypothesis H⋆

M contained
in a predefined hypothesis classH. For simplicity, we omit the subscript when the context is clear.

Oracle and estimator I . Our method assumes access to an oracle h(Ĥ;M) = 1{Ĥ=H⋆
M}

at training time (but not test time), which is a binary function that tells us whether the
predicted hypothesis Ĥ for environment M corresponds to the true hypothesis H⋆

M
2 .

This oracle acts as a solution verifier, and, impor-
tantly, having access to this oracle is not the same
as embedding an inductive bias into the model. The
oracle does not reveal how to uncover hidden infor-
mation; it only indicates whether our prediction Ĥ
is correct. As an example, consider the label iden-
tification problem. In this problem the agent seeks
to correctly identify a label (e.g., the best action in
a MAB problem) in a problem with K alternatives.
We can setH = {1, . . . ,K} and H⋆ = i⋆, where i⋆

is the index of the correct label.

Using this oracle h, we propose to leverage super-
vised learning techniques and use the feedback pro-

vided by h to learn a mapping I ∈ (Dt 7→ ∆(H)) that computes the posterior distribution over the true
hypothesis from trajectories of data. Then, the estimator Ĥt ∼ I(·|Dt) can be thought as a Thompson
sampling estimator, which can be used to provide a reward signal to an RL agent that collects the
data Dt using an exploration policy π (we can also use an estimator Ĥt = argmaxH I(H|Dt)).

Problem. Let Pπ
M be the underlying probability measure of the process ((Dt, at))t under a sampling

strategy π. In the following we also write Pπ
M∼P(M)(·) = EM∼P(M)[Pπ

M (·)] to denote the expected
probability over the prior. Then, we consider the following two online learning problems:

• Fixed confidence setting: the agent needs to learn to stop the data sampling process as
soon as it is sufficiently confident to have correctly estimated H⋆ for an environment M .
We equip the learner with the capability to stop the sampling process at any point in time.
We denote such stopping rule by τ , which is a stopping time with respect to the filtration
(σ(Dt))t. Then, the learner wishes to find an optimal stopping rule τ (with τ < ∞ a.s.),

2One may also consider a scenario in which, given a set of potential hypotheses (Hi)i, the agent is tasked
with predicting just one of them, and thus we can set h(Ĥ,M) = maxi 1{Ĥ = Hi}.
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exploration policy π and inference network I subject to a confidence level at the stopping
time τ :

min
τ,π,I

EM∼P(M) [τ ] subject to Pπ
M∼P(M)

(
τ <∞, h

(
Ĥτ ;M

)
= 1
)
≥ 1− δ. (1)

This setting is similar to Bayesian BAI with fixed confidence [47, 36], where the goal is to
estimate the best action.

• Fixed horizon (budget) setting: in this case, for a given horizon N ∈ N, we are interested in
learning π, I such that

max
π,I

Pπ
M∼P(M)

(
h
(
ĤN ;M

)
= 1
)

(2)

where the data D is sampled from M using a policy π. This setting is similar to Bayesian
fixed-budget BAI in the classical bandit setting [5, 54, 62, 4, 83].

To solve both problems, we consider a unified meta-RL approach that we discuss in the next section.
In appendix C we also discuss more in detail the connection between our technique, and other pure
exploration approaches, such as IDS [101] and Track and Stop [36].

2.2 ICPE: In-Context Pure Exploration

In this section we propose ICPE, a meta-RL approach for solving eqs. (1) and (2). The first aspect
of our approach is the treatment of trajectories of data Dt = (x1, a1, . . . , xt) as sequences to be
given as input to sequential models, such as Transformers. This approach, inspired by sequential
modeling [48], allows us to model the problem as a Markov Decision Process (MDP) [91]. An
environment M can be then modeled as an MDP, which is a sequential model characterized by a tuple
M = (S,A, P ′, r,H⋆

M , ρ), where S is the state space, A the action space, P ′ : S × A → ∆(S) is
the transition function, r : S → [0, 1] defines the reward function (to be defined later), H⋆ ∈ H is the
true hypothesis in M and ρ is the initial state distribution. The model is similar to the one introduced
in our problem formulation, but the state is fixed, and does not grow in time.

Nonetheless, we can use such modeling methodology for practical reasons: we define the state at
time-step t as st = (Dt,∅t:N ), with ∅t:N indicating a null sequence of tokens for the remaining
steps up to some pre-defined horizon N , with s1 = (x1,∅1:N ). This limit N is a practical upper
bound on the horizon that limits the dimensionality of the state, which is introduced for implementing
the algorithm. The action space remains A, and the transition dynamics P ′ are induced by (ρ, P ).
By modeling the problem as an MDP, it allows us to cast the maximization over π as an RL problem.
We now discuss the fixed confidence setting eq. (1) more in detail, while for the fixed horizon we
refer the reader to appendix C.2.

2.2.1 Fixed Confidence Setting

In the fixed confidence setting (eq. (1)), problems terminate at some random point in time τ , chosen
by the learner, or when the maximum horizon N is reached. We model this by giving πt an additional
stopping action astop such that πt : Dt → A∪{astop} so that the data collection processes terminates
at the stopping-time τ = min(N, inf{t ∈ N : at = astop}).
To solve eq. (1) we consider the dual problem

min
λ≥0

max
I

max
π

Vλ(π, I) = −Eπ
M∼P(M)[τ ] + λ

[
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ

]
, (3)

where Ĥτ ∼ I(·|sτ ), with sτ = Dτ under our MDP notation.

Then, we can use the MDP formalism to define an RL problem: we define a reward r that penalizes
the agent at all time-steps, that is rt = −1, while at the stopping-time we have rτ = −1 +
λEH∼I(·|sτ )[h(H;M)]. Accordingly, one can define the Q-value of (π, I, λ) in a state-action pair

(s, a) at the t-th step as Qπ,I
λ (s, a) = Eπ

M∼P(M)

[∑τ
n=t rn

∣∣∣st = s, at = a
]
, with an ∼ πn(·|sn)

(note that, since one can deduce the timestep from the nature of the state, due to the number of null
tokens, we omit the subscript t from the Q-function). Therefore, when averaging over P(M), and
the initial state, the value of (π, I, λ) is exactly Vλ(π, I) = EM∼P(M),s1∼ρ,a∼π1(·|s1)[Q

π,I
λ (s1, a)].
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Algorithm 1 ICPE (In-Context Pure Exploration) - Fixed Confidence

1: Input: Tasks distribution P(M); confidence δ; learning rates α, β; initial λ and hyper-parameters T,N, η.
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) with hypothesis H⋆, observe s1 ∼ ρ and set t← 1.
5: repeat
6: Execute action at = argmaxa Qθ(st, a) in M and observe next state st+1.
7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal }, H⋆) to B.
8: Set t← t+ 1.
9: until at−1 = astop or t > N .

10: Update variable λ according to

λ← max (0, λ− β (Iϕ(H
⋆|sτ )− 1 + δ) . (4)

11: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
1{a̸=astop} (yλ(z)−Qθ(s, a))

2 + (rλ(zstop)−Qθ(s, astop))
2
]
, (5)

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[
log(Iϕ(H

⋆|s′)
]
. (6)

12: Update θ̄ ← (1− η)θ̄ + ηθ and every T steps set ϕ̄← ϕ.
13: end while

Practical implementation. Optimizing minλ≥0 maxI,π Vλ(π, I) can be viewed as a multi-
timescale stochastic optimization problem: the slowest timescale updates the variable λ, an in-
termediate timescale optimizes over I , and the fastest refines the policy π.

We treat each optimization separately, and optimize using a descent-ascent scheme. The distribution
I is modeled using a sequential architecture with parameter ϕ, and we denote it by Iϕ. Then,
considering a fixed (π, λ), the maximization problem in eq. (3) with respect to I amounts to solving
maxϕ Eπ

M∼P(M)[h(Ĥτ ;M)] with Ĥτ ∼ Iϕ(·|sτ ). Therefore, we can train ϕ with a cross-entropy
loss −

∑
H′ h(H ′;M) log(Iϕ(H

′|sτ )) = − log(Iϕ(H
⋆|sτ )), averaged over different environments

(to that aim, we use a replay buffer, introduced down below).

The policy π is defined by the greedy policy with respect to the Q-values defined above. Therefore,
we can use RL techniques to learn the Q-function of a policy π maximizing the value in eq. (3),
assuming (λ, I) fixed. We denote this Q-function by Qθ, which is implemented using a sequential
architecture with a parameter θ.

We train θ using DQN [73, 111] with a replay bufferB and a target network Qθ̄ parameterized by θ̄ (the
replay buffer is used to collect data during training). To maintain timescale separation, we introduce
a separate target inference network Iϕ̄, parameterized by ϕ̄, which provides feedback for training
θ. Note that, as discussed earlier, we introduce a dedicated stop-action astop whose value depends
solely on history. Thus, its Q-value can be updated at any time, allowing retrospective evaluation of
stopping. For learning the Q-values, we define the reward for a transition z = (s, a, s′, d,H⋆) as:

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|s′), d = 1{z terminal},

where we set s′ ← s if a = astop, and terminal means either a = astop or the last step in the horizon.
We also define the transition zstop by replacing (a, s′) with (astop, s) in z. Then, for a ̸= astop, the
Q-values can be learned using classical TD-learning techniques [109] and the target value is:

yλ(z) = rλ(z) + (1− d)max
i

Qθ̄(s
′, ai).

Instead, for the stopping action, we use the loss (rλ(zstop)−Qθ(s, astop))
2. Therefore, the overall

loss used for training θ on a transition z is:

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,

where 1{a ̸=astop} avoids double accounting for the stopping action. Then, to train (θ, ϕ), we sample
two independent batches (B,B′) ∼ B from the buffer, and compute the gradient updates as in eqs. (5)
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and (6) of algorithm 1. We periodically update target networks, setting ϕ̄ ← ϕ every T steps and
using a Polyak averaging θ̄ ← (1− η)θ̄ + ηθ, with η ∈ (0, 1).

Finally, we update λ by assessing the confidence of Iϕ at the stopping time (4) for a fixed (π, I).
Thus, for sufficiently small learning rates, optimizing (λ, θ, ϕ) resembles an ascent-descent scheme.

3 Empirical Evaluation

We evaluate our approach across various exploration tasks, including deterministic bandits with
fixed budgets and stochastic bandits with or without latent structure. Additionally, we also evaluate
ICPE in the broader setting of classifying images by sequentially revealing image patches. Due to
space limitations, we refer the reader to appendix D for more details and more experiments on MAB
problem with feedback graphs [98], MDPs with hidden information and an example of algorithmic
discovery, where ICPE learns a probabilistic version of binary search.

Algorithms. In our evaluations we compare to different algorithms, depending on the problem.
Some of the algorithms include: uniform sampling, DQN [72], TaS (Track and Stop) [36], TTPS (Top
Two Sampling) [102] and Deep Contextual Multi-Armed Bandits (Deep CMAB) [24]. Moreover, we
also include a variant of IDS [101] based on the I-mapping, which uses the observation that I defines
a posterior distribution over H. Always based on this idea, we also introduce I-DPT, a variant of
DPT [64], based on the fact that I can be used to explore a problem à-la Thompson Sampling. More
information about these methods, and their hyper-parameters, can be found in appendix C 3.

3.1 Bandit Problems

We now apply ICPE to the classical BAI problem within MAB tasks. For the MAB setting we have a
finite number of actions A = {1, . . . ,K}, corresponding to the actions in the MAB problem M . For
each action a, we define a corresponding reward distribution νa from which rewards are sampled i.i.d.
Then, P(M) is a prior distribution on the actions’ rewards distributions (νa)a and for BAI we let
H⋆ = argmaxa Er∼νa

[r], so that we need to identify the best action. Lastly, the observation at time
t is simply xt = rt, where rt is the reward sampled from νat

.

Deterministic Bandits with Fixed Horizon. We first evaluate ICPE in the deterministic bandit
environments with a fixed horizon K, equal to the number of actions. Therefore, ICPE needs
to learn to select each action only once to determine the optimal action. Each action’s reward
distribution is deterministic, so that νa = δµa

is a Dirac distribution, with (µa)a∈A drawn from
P(M) = U([0, 1]K). Figure 2 summarizes performance relative to uniform sampling, DQN [72],
and I-DPT. ICPE consistently identifies optimal actions (probability of correctness ≈ 1) and learns
optimal sampling strategies (fraction of unique actions ≈ 1). Without being explicitly instructed to
“choose each action exactly once”, ICPE discovers on its own that sampling every action is exactly
what yields enough information to identify the best one. In contrast, baseline performances degrade
significantly as the number of actions increases.
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Figure 2: Deterministic bandits: (left) probability of correctly identifying the best action vs. K;
(right) average fraction of unique actions selected during exploration vs. K.

3In the results, shaded areas indicate 95% confidence intervals, computed via hierarchical bootstrapping.
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Stochastic Bandit Problems. Next, we evaluate ICPE on stochastic bandit environments for
both the fixed confidence (with δ = 0.1 and N = 100) and fixed horizon setting (with horizon
30). Each action’s reward distribution is normally distributed νa = N (µa, 0.5

2), with (µa)a∈A
drawn from P(M). In this case P(M) is a uniform distribution over problems with minimum gap
maxa µa −maxb ̸=a µa ≥ ∆0, with ∆0 = 0.4. Hence, an algorithm could exploit this property to
infer H⋆ more quickly. For this case, we also derive some sample complexity bounds in appendix B.
Figures 3 and 4 summarize the numerical results for the two settings. In this case we also compare to
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Figure 3: Results for stochastic MABs with fixed confidence δ = 0.1 and N = 100: (a) average
stopping time τ ; (b) survival function of τ ; (c) probability of correctness Pπ

M∼P(M)(h(Ĥτ ;M) = 1).

TaS and TTPS, and use the stopping rule of TaS also for Uniform and TTPS (the stopping rule is based
on a self-normalized process, compared with a threshold function β(t, δ); see also appendix C for
more details). Overall, we see in fig. 3a how ICPE is able to find a more efficient strategy compared to
classical techniques. Interestingly, also I-DPT seems to achieve relatively small sample complexities.
However, its tail distribution of τ is rather large compared to ICPE (fig. 3b) and the correctness is
smaller than 1−δ for large values of K. Methods like TaS and TTPS achieve larger sample complexity,
but also larger correctness values (fig. 3c). This is due to the fact that it is hard to define stopping
rules. In fact, it is well known that current theoretically sound stopping rules are overly conservative
[36]. Nonetheless, even using a less conservative rule such as β(t, δ) = log((1 + log(t))/δ), which
is what we use (and, yet, has not been proven to guarantee δ-correctness), is still conservative. The
fact that ICPE can achieve the right value of confidence can help discover potential ways to define
stopping rules. Lastly, in fig. 3a in black we show a complexity bound (proof in appendix B.2). While
seemingly constant, it is actually slowly increasing in the number of arms.
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Figure 4: Correctness
Pπ
M∼P(M)(h(Ĥ;M) = 1)

for stochastic MABs with fixed
horizon N = 30.

Lastly, in fig. 4, we compare the correctness of these methods in
the fixed horizon setting with N = 30. Note that the training of
ICPE differs from the fixed-confidence setting (i.e., there is no
stopping action). While the results of ICPE are relatively good,
the learning is more brittle compared to the fixed confidence
(in fact, I-DPT, which is based on the I mapping learning by
ICPE, has terrible performance). We believe that including a
stopping action induces a form of curriculum learning, where
the agent learns to adapt to the difficulty of the problem, greatly
improving the learning process. Such effect is lost in the fixed
horizon. Investigating this aspect is a future venue of research.
Moreover, we believe ICPE can help shed a light on the fixed
horizon problem, which is less studied compared to the fixed
confidence one.

Bandit Problems with Hidden Information. To evaluate
ICPE in structured settings, we introduce bandit environments

with latent informational dependencies, termed magic actions. In the single magic action case,
the magic action am’s reward is distributed according to N (µam , σ2

m), where σm ∈ (0, 1) and
µam

:= ϕ(argmaxa ̸=am
µa) encodes information about the optimal action’s identity through an

invertible mapping ϕ that is unknown to the learner. The index am is fixed, and the mean rewards of
the other actions (µa)a ̸=am are sampled fromP(M), a uniform distribution over models guaranteeing
that am, as defined above, is not optimal (see appendices B.3 and D.1.3 for more details). Then, we
define the reward distribution of the non-magic actions as N (µa, (1− σm)2).

8



In our first experiment, we vary the standard deviation σm in [0, 1]. Thus, agents must balance
sampling between informative and noisy actions based on varying uncertainty levels. We evaluate
ICPE in a fixed-confidence setting with error rate δ = 0.1. Figure 5a compares ICPE’s sample
complexity against a theoretical lower bound (see appendix B) and an informed baseline, denoted as
I-IDS, which performs standard IDS leveraging ICPE’s trained inference network I for exploiting
the magic action (details in Appendix C). ICPE achieves sample complexities close to the theoretical
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Figure 5: (a) Single magic action: average stopping time and the theoretical lower bound across
varying σm. (b) Magic chain: average stopping time between ICPE, I-IDS vs. number of magic
actions. (c) Cumulative regret minimization task with σm = 0.1.

bound across all tested noise levels, consistently outperforming I-IDS. Additionally, we evaluate
ICPE in a cumulative regret minimization setting, despite ICPE not being explicitly optimized for
regret minimization: at the stopping τ , ICPE commits to the identified best action (i.e., explore-then-
commit strategy). As demonstrated in Figure 5c, ICPE outperforms classic algorithms such as UCB,
Thompson Sampling, and standard IDS initialized with Gaussian priors.

To further challenge ICPE, we introduce a multi-layered "magic chain" bandit environments, where
there is a sequence of n magic actions Am := {ai1 , . . . , ain} ⊂ A such that µaij

= ϕ(µaij+1
), and

µain
= ϕ(argmaxa/∈Am

µa). The first index i1 is known, and by following the chain, an agent can
uncover the best action in n steps. However, the optimal sample complexity depends on the ratio of
magic actions to non-magic arms. Varying the number of magic actions from 1 to 9 in a 10-actions
environment, Figure 5b demonstrates ICPE’s empirical performance, outperforming I-IDS.

3.2 Semi-Synthetic Experiment: Pixel Sampling for MNIST Classification

Lastly, to evaluate the applicability of ICPE to structured real-world decision problems, we introduce
a classification task inspired by active perception settings. Formally, the environment class P(M)
consists of MNIST images [63], each partitioned into a set of 36 distinct regions, corresponding
to the action space A = {1, . . . , 36}. Initially, all regions are masked, and at each timestep t, the
agent selects an action at ∈ A to reveal the corresponding region in the image (example provided
in fig. 1). The observation at time t is xt = ot, where ot represents the state of the image after
revealing the specified pixels. The episode concludes after a fixed budget of 12 steps. At this point,
classification of the image label (or corresponding digit) H⋆ is performed by applying a pre-trained
convolutional classifier to the partially revealed image. To promote generalization and prevent
memorization of image-specific patters, each image from the distribution P(M) undergoes several
random augmentations (rotation, translation, noising, elastic deformation and contrast shifts).

For this setting we consider a slight variation of ICPE that may be of interest: we consider an
inference net I that is a pre-trained classifier, trained on fully revealed images from P(M). Using
this network, we benchmark ICPE against two baselines: standard uniform random sampling and
Deep Contextual Multi-Armed Bandit (Deep CMAB) [24], which employs Bayesian neural networks
to sample from a posterior distribution (Deep CMAB uses as rewards the correctness probabilities
computed by I). Table 6b reports the classification accuracy and number of regions sampled. ICPE
achieves substantially better performance than both baselines using fewer of comparable regions.
However, to analyze whether ICPE learns a sampling strategy that adapts to the context of the task,
we compare region selection distributions across digit classes using pairwise chi-squared tests. ICPE
exhibits significantly more variation across classes than either baseline, as visualized in Figure 6a.
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Agent Accuracy Avg. Regions Used
ICPE 0.91± 0.03 10.09± 0.11
Deep CMAB 0.66± 0.04 7.90± 0.09
Uniform 0.25± 0.04 10.42± 0.09
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Figure 6: MNIST pixel-sampling task: (a) A chord between two digits indicates that their distributions
were not significantly different (p-value > 0.05, based on a pairwise chi-squared test), with thicker
chords representing higher p-values.; (b) accuracy and performance (mean ± 95% CI)

This suggests ICPE adapts its exploration to class-conditional structure, rather than applying a generic
sampling policy.

4 Conclusions

In this work, we addressed the design of efficient pure-exploration strategies for the active sequential
hypothesis testing problem, where an agent sequentially selects samples to rapidly identify the true
hypothesis. While particularly relevant across different domains, it is difficult to design optimal
strategies in the presence of hidden structure, and most of the existing optimal strategies are restricted
to simple cases for unstructured multi-armed bandit problems. To overcome these limitations, we
introduced ICPE, an in-context learning framework that leverages Transformers to learn exploration
policies directly from experience. Our experiments span unstructured and structured stochastic/deter-
ministic bandits, an adaptive MNIST pixel-revelation task, and complex MDP environments. Our
results demonstrate that ICPE generalizes beyond tabular and graph-structured settings, autonomously
discovering task-specific adaptive exploration strategies. We believe our work makes a fundamental
contribution to active testing, and in particular to the sub-field of best-arm identification, where
key questions—such as the gap between fixed-horizon and fixed-confidence settings—remain open.
Future directions include: a theoretical analysis of ICPE’s guarantees; extending the framework
to active regression and continuous-parameter hypotheses; improving the model architecture and
computational efficiency to scale ICPE to larger, higher-dimensional problems. Lastly, designing
methods capable of generalizing to unseen problems remains an important challenge.

Acknowledgments

The authors are pleased to acknowledge that the computational work reported on in this paper
was performed on the Shared Computing Cluster administered by Boston University’s Research
Computing Services and computing resources from the Laboratory for Information and Decision
Systems at MIT. R.W. was supported by a Master of Engineering fellowship by the Eric and Wendy
Schmidt Center at the Broad Institute.

10



References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] A. Al Marjani, A. Garivier, and A. Proutiere. Navigating to the best policy in markov decision
processes. Advances in Neural Information Processing Systems, 34:25852–25864, 2021.

[3] D. Arumugam and T. L. Griffiths. Toward efficient exploration by large language model agents.
arXiv preprint arXiv:2504.20997, 2025.

[4] A. Atsidakou, S. Katariya, S. Sanghavi, and B. Kveton. Bayesian fixed-budget best-arm
identification. arXiv preprint arXiv:2211.08572, 2022.

[5] J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed bandits. In COLT-23th
Conference on learning theory-2010, pages 13–p, 2010.

[6] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47:235–256, 2002.

[8] P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning.
Advances in Neural Information Processing Systems (NeurIPS), 21, 2008.

[9] J. Beck, R. Vuorio, E. Z. Liu, Z. Xiong, L. Zintgraf, C. Finn, and S. Whiteson. A survey of
meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

[10] G. Bellala, S. Bhavnani, and C. Scott. Extensions of generalized binary search to group
identification and exponential costs. Advances in Neural Information Processing Systems, 23,
2010.

[11] Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. Citeseer, 1990.

[12] S. M. Berry, B. P. Carlin, J. J. Lee, and P. Muller. Bayesian adaptive methods for clinical trials.
CRC press, 2010.

[13] L. Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901, 2020.

[15] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed and continuous-armed
bandits. Theoretical Computer Science, 412(19):1832–1852, 2011.

[16] O. Cappé, A. Garivier, O.-A. Maillard, R. Munos, and G. Stoltz. Kullback-leibler upper
confidence bounds for optimal sequential allocation. The Annals of Statistics, pages 1516–
1541, 2013.

[17] F. Cecchi and N. Hegde. Adaptive active hypothesis testing under limited information. Ad-
vances in Neural Information Processing Systems, 30, 2017.

[18] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In
Advances in Neural Information Processing Systems, volume 34, pages 15084–15097, 2021.

[19] X. Chen, Q. Liu, and Y. Wang. Active learning for contextual search with binary feedback.
Management Science, 69(4):2165–2181, 2023.

[20] H. Chernoff. Sequential design of experiments. The Annals of Mathematical Statistics,
30(3):755–770, 1959.

11



[21] H. Chernoff. Sequential design of experiments. Springer, 1992.

[22] J. Coda-Forno, M. Binz, Z. Akata, M. Botvinick, J. Wang, and E. Schulz. Meta-in-context
learning in large language models. Advances in Neural Information Processing Systems,
36:65189–65201, 2023.

[23] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. Journal
of artificial intelligence research, 4:129–145, 1996.

[24] M. Collier and H. U. Llorens. Deep contextual multi-armed bandits. arXiv preprint
arXiv:1807.09809, 2018.

[25] Z. Dai, F. Tomasi, and S. Ghiassian. In-context exploration-exploitation for reinforcement
learning. arXiv preprint arXiv:2403.06826, 2024.

[26] S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems, volume 17, 2004.

[27] R. Degenne and W. M. Koolen. Pure exploration with multiple correct answers. Advances in
Neural Information Processing Systems, 32, 2019.

[28] R. Degenne, W. M. Koolen, and P. Ménard. Non-asymptotic pure exploration by solving
games. Advances in Neural Information Processing Systems, 32, 2019.

[29] R. Degenne, P. Ménard, X. Shang, and M. Valko. Gamification of pure exploration for linear
bandits, 2020.

[30] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[31] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast re-
inforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[32] S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine. Rvs: What is essential for offline rl
via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

[33] E. Even-Dar, S. Mannor, Y. Mansour, and S. Mahadevan. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems. Journal of machine
learning research, 7(6), 2006.

[34] K. Gan, S. Jia, and A. Li. Greedy approximation algorithms for active sequential hypothesis
testing. Advances in Neural Information Processing Systems, 34:5012–5024, 2021.

[35] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What can transformers learn in-context? a
case study of simple function classes. Advances in Neural Information Processing Systems,
35:30583–30598, 2022.

[36] A. Garivier and E. Kaufmann. Optimal best arm identification with fixed confidence. In
Conference on Learning Theory, pages 998–1027. PMLR, 2016.

[37] B. K. Ghosh. A brief history of sequential analysis. Handbook of sequential analysis, 1, 1991.

[38] D. Ghosh, M. K. Hanawal, and N. Zlatanov. Fixed budget best arm identification in unimodal
bandits. Transactions on Machine Learning Research, 2024.

[39] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning
and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

[40] D. Golovin, A. Krause, and D. Ray. Near-optimal bayesian active learning with noisy observa-
tions. Advances in Neural Information Processing Systems, 23, 2010.

[41] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

12



[42] A. Gopalan, S. Mannor, and Y. Mansour. Thompson sampling for complex online problems.
In International conference on machine learning, pages 100–108. PMLR, 2014.

[43] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.

[44] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, Sept. 2020.

[45] K. Harris and A. Slivkins. Should you use your large language model to explore or exploit?
arXiv preprint arXiv:2502.00225, 2025.

[46] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(3):90–95, 2007.

[47] K. Jang, J. Komiyama, and K. Yamazaki. Fixed confidence best arm identification in the
bayesian setting. Advances in Neural Information Processing Systems, 37, 2024.

[48] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. In Advances in Neural Information Processing Systems, volume 34, 2021.

[49] Y. Jedra and A. Proutiere. Optimal best-arm identification in linear bandits. Advances in
Neural Information Processing Systems, 33:10007–10017, 2020.

[50] M. Jourdan, R. Degenne, D. Baudry, R. de Heide, and E. Kaufmann. Top two algorithms
revisited. Advances in Neural Information Processing Systems, 35:26791–26803, 2022.

[51] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žídek, A. Potapenko, et al. Highly accurate protein structure prediction with
alphafold. nature, 596(7873):583–589, 2021.

[52] J. Kagan. Motives and development. Journal of personality and social psychology, 22(1):51,
1972.

[53] Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed bandits. In
International conference on machine learning, pages 1238–1246. PMLR, 2013.

[54] E. Kaufmann, O. Cappé, and A. Garivier. On the complexity of best-arm identification in
multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

[55] E. Kaufmann and W. M. Koolen. Mixture martingales revisited with applications to sequential
tests and confidence intervals. Journal of Machine Learning Research, 22(246):1–44, 2021.

[56] E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically optimal finite-
time analysis. In International conference on algorithmic learning theory, pages 199–213.
Springer, 2012.

[57] T. Kocák and A. Garivier. Best arm identification in spectral bandits. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, Yokohama,
Yokohama, Japan, 2021.

[58] A. Krishnamurthy, K. Harris, D. J. Foster, C. Zhang, and A. Slivkins. Can large language
models explore in-context? In Advances in Neural Information Processing Systems, volume 37,
2024.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, volume 25, 2012.

[60] A. Kumar, X. B. Peng, and S. Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

13



[61] T. Lattimore and M. Hutter. Pac bounds for discounted mdps. In Algorithmic Learning Theory:
23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings
23, pages 320–334. Springer, 2012.

[62] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[63] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[64] J. Lee, A. Xie, A. Pacchiano, Y. Chandak, C. Finn, O. Nachum, and E. Brunskill. Supervised
pretraining can learn in-context reinforcement learning. Advances in Neural Information
Processing Systems, 36:43057–43083, 2023.

[65] D. V. Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, 27(4):986–1005, 1956.

[66] J. Lisman, G. Buzsáki, H. Eichenbaum, L. Nadel, C. Ranganath, and A. D. Redish. Viewpoints:
how the hippocampus contributes to memory, navigation and cognition. Nature neuroscience,
20(11):1434–1447, 2017.

[67] G. Liu, M. Tang, and B. Eysenbach. A single goal is all you need: Skills and exploration
emerge from contrastive rl without rewards, demonstrations, or subgoals. arXiv preprint
arXiv:2408.05804, 2024.

[68] S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations. In
Advances in Neural Information Processing Systems, volume 24, 2011.

[69] A. A. Marjani, A. Garivier, and A. Proutiere. Navigating to the best policy in markov decision
processes. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[70] A. A. Marjani and A. Proutiere. Adaptive sampling for best policy identification in markov
decision processes. In International Conference on Machine Learning, pages 7459–7468.
PMLR, 2021.

[71] W. McKinney et al. Data structures for statistical computing in python. In Proceedings of the
9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

[72] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[73] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[74] A. Moeini, J. Wang, J. Beck, E. Blaser, S. Whiteson, R. Chandra, and S. Zhang. A survey of
in-context reinforcement learning. arXiv preprint arXiv:2502.07978, 2025.

[75] G. Monea, A. Bosselut, K. Brantley, and Y. Artzi. Llms are in-context reinforcement learners.
arXiv preprint arXiv:2410.05362, 2024.

[76] L. S. Morris, M. M. Grehl, S. B. Rutter, M. Mehta, and M. L. Westwater. On what motivates
us: a detailed review of intrinsic v. extrinsic motivation. Psychological medicine, 52(10):1801–
1816, 2022.

[77] S. Mukherjee, A. S. Tripathy, and R. Nowak. Chernoff sampling for active testing and extension
to active regression. In International Conference on Artificial Intelligence and Statistics, pages
7384–7432. PMLR, 2022.

[78] K. P. Murphy. Probabilistic machine learning: Advanced topics. MIT press, 2023.

[79] L. Nadel. The hippocampus and space revisited. Hippocampus, 1(3):221–229, 1991.

[80] L. Nadel and M. A. Peterson. The hippocampus: part of an interactive posterior representational
system spanning perceptual and memorial systems. Journal of Experimental Psychology:
General, 142(4):1242, 2013.

14



[81] M. Naghshvar and T. Javidi. Active sequential hypothesis testing. The Annals of Statistics,
41(6):2703–2738, 2013.

[82] M. Naghshvar, T. Javidi, and K. Chaudhuri. Noisy bayesian active learning. In 2012 50th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1626–1633. IEEE, 2012.

[83] N. Nguyen, I. Aouali, A. György, and C. Vernade. Prior-Dependent Allocations for Bayesian
Fixed-Budget Best-Arm Identification in Structured Bandits. In Proceedings of The 28th
International Conference on Artificial Intelligence and Statistics, pages 379–387. PMLR, Apr.
2025.

[84] A. Nie, Y. Su, B. Chang, J. N. Lee, E. H. Chi, Q. V. Le, and M. Chen. Evolve: Evaluating and
optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

[85] R. Nowak. Generalized binary search. In 2008 46th annual Allerton conference on communi-
cation, control, and computing, pages 568–574. IEEE, 2008.

[86] J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. P. van Hasselt, S. Singh, and D. Silver.
Discovering reinforcement learning algorithms. Advances in Neural Information Processing
Systems, 33:1060–1070, 2020.

[87] J. O’keefe and L. Nadel. Précis of o’keefe & nadel’s the hippocampus as a cognitive map.
Behavioral and Brain Sciences, 2(4):487–494, 1979.

[88] I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via posterior
sampling. Advances in Neural Information Processing Systems (NeurIPS), 26, 2013.

[89] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

[90] R. Poiani, M. Jourdan, E. Kaufmann, and R. Degenne. Best-Arm Identification in Unimodal
Bandits. In Proceedings of The 28th International Conference on Artificial Intelligence and
Statistics, pages 2233–2241. PMLR, Apr. 2025.

[91] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[92] T. Rainforth, A. Foster, D. R. Ivanova, and F. Bickford Smith. Modern bayesian experimental
design. Statistical Science, 39(1):100–114, 2024.

[93] P. Resnick and H. R. Varian. Recommender systems. Communications of the ACM, 40(3):56–
58, 1997.

[94] C. Rouyer, D. van der Hoeven, N. Cesa-Bianchi, and Y. Seldin. A near-optimal best-of-both-
worlds algorithm for online learning with feedback graphs. Advances in Neural Information
Processing Systems, 35:35035–35048, 2022.

[95] A. Russo and A. Pacchiano. Adaptive exploration for multi-reward multi-policy evaluation.
arXiv preprint arXiv:2502.02516, 2025.

[96] A. Russo and A. Proutiere. Model-free active exploration in reinforcement learning. Advances
in Neural Information Processing Systems, 36:54740–54753, 2023.

[97] A. Russo and A. Proutiere. On the sample complexity of representation learning in multi-task
bandits with global and local structure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 9658–9667, 2023.

[98] A. Russo, Y. Song, and A. Pacchiano. Pure exploration with feedback graphs. In Proceedings
of The 28th International Conference on Artificial Intelligence and Statistics, Proceedings of
Machine Learning Research. PMLR, 2025.

[99] A. Russo and F. Vannella. Multi-reward best policy identification. Advances in Neural
Information Processing Systems, 37:105583–105662, 2025.

15



[100] D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

[101] D. Russo and B. Van Roy. Learning to optimize via information-directed sampling. Operations
Research, 66(1):230–252, 2018.

[102] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al. A tutorial on thompson
sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

[103] T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.

[104] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[105] D. Silver and R. S. Sutton. Welcome to the era of experience. Google AI, 2025.

[106] M. Soare, A. Lazaric, and R. Munos. Best-arm identification in linear bandits. In Advances in
Neural Information Processing Systems, volume 27, 2014.

[107] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaskowski, and J. Schmidhuber. Training agents using
upside-down reinforcement learning. CoRR, abs/1912.02877, 2019.

[108] J. Sun, Z. Wang, R. Yang, C. Xiao, J. Lui, and Z. Dai. Large language model-enhanced
multi-armed bandits. arXiv preprint arXiv:2502.01118, 2025.

[109] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[110] N. K. Vaidhiyan, S. Arun, and R. Sundaresan. Active sequential hypothesis testing with
application to a visual search problem. In 2012 IEEE International Symposium on Information
Theory Proceedings, pages 2201–2205. IEEE, 2012.

[111] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[112] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

[113] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, 2017.

[114] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
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Appendix

Limitations and Broader Impact

Finite vs continuous sets of hypotheses. One of the main limitations of this work is the assumption
that H is finite. This is a common assumption in active sequential hypothesis testing, and the
continuous case is also referred to as active regression [77]. We believe our framework can be
extended to this case with a proper parametrization of the inference mapping I that allows to sample
from a continuous set.

On the prior set of problems P(M). One limitation of our approach is the assumption of access
to a prior set of problems P(F). In reality, such set may lack a common structure and need not be
stationary. Nonetheless, we view this as a useful starting point for developing more sophisticated
methods. A natural direction for future work is to extend our framework to an adversarial setting, in
which problem instances can evolve or even be chosen to thwart the learner.

Oracle assumption. Another limitation arises from assuming access to a perfect oracle
h(Ĥ;M) = 1{Ĥ=H⋆

M}
. In practice, computing such an oracle may be infeasible, and noise-

free feedback is rarely available. We make this assumption because, in many settings, one can
instantly verify the correct hypothesis (for example, classifying an image as a dog or selecting the best
arm from a vector of averages). Furthermore, our main focus is in the sequential process of starting
from "no data", to being able to predict the right hypothesis as quickly as possible (see the MNIST
example). We believe this framework to be valuable when one can build verifiable simulations to
train policies that transfer to real-world problems.

Practical limit on the horizon of ICPE. A limitation of ICPE is the current limit N on the horizon
of the trajectory. This is due to the computation cost of training and using transformer architectures.
Future work could investigate how to extend this limit, or completely remove it.

Scaling to larger problems with transformers. Another technical limitation of ICPE is the
hardness to scaling to larger problems. This is closely related to the above limitation, and it is mainly
an issue of investigating how to improve the current architecture of ICPE and/or distribute training.

On the training of transformers. Lastly, we believe that ICPE does not use the full capabilities of
transformer architectures. For example, during training and evaluation, we always use the last hidden
state of the transformer to make prediction, while the other hidden states are left untouched.

Bayesian BAI. Some of our work falls within the Bayesian Best Arm Identification theoretical
framework. However, the Bayesian setting is less known compared to the frequentist one, and only
recently some work [47] studied the unstructured Gaussian case. Future work should compare ICPE
more thoroughly with Bayesian techniques once the Bayesian setting is more developed.

Broader impact . This paper primarily focuses on foundational research in pure exploration
problems. Although we do not directly address societal impacts, we recognize their importance.
The methods proposed here improve the sample efficiency of active sequential hypothesis testing
procedures, and could be applied in various contexts with societal implications. For instance, our
technique could be used in decision-making systems in healthcare, finance, and autonomous vehicles,
where biases or errors could have significant consequences. Therefore, while the immediate societal
impact of our work may not be evident, we urge future researchers and practitioners to carefully
consider the ethical implications and potential negative impacts in their specific applications

19



A Extended Related Work

Exploration for Regret Minimization. The problem of exploration is particular relevant in RL
[109], and many strategies have been introduced, often with the goal of minimizing regret. Notably,
approaches based on Posterior Sampling [56, 88, 100, 42] and Upper Confidence Bounds [7, 8, 16,
61, 6] have received significant attention. However, the problem of minimizing regret is a relevant
objective only when one cares about the rewards accumulated so far, and does not answer the problem
of how to efficiently gather data to reach some desired goal. In this context, Information-Directed
Sampling (IDS) [100, 102] has been proposed to strike a balance between minimizing regret and
maximizing information gain, where the latter is quantified as the mutual information between the
true optimal action and the subsequent observation. However, when the information structure is
unknown, it effectively becomes a significant challenge to exploit it. Importantly, if the state does not
encode the structure of the problem, RL techniques may not be able to exploit hidden information.

In-Context Learning, LLMs and Return Conditioned Learning. Recently, Transformers [113,
18] have demonstrated remarkable in-context learning capabilities [14, 35]. In-context learning [74] is
a form of meta-RL [9], where agents can solve new tasks without updating any parameters by simply
conditioning on additional context such as their action-observation histories. When provided with
a few supervised input-output examples, a pretrained model can predict the most likely next token
[64]. Building on this ability, [64] recently showed that Transformers can be trained in a supervised
manner using offline data to mimic posterior sampling in reinforcement learning. In [58] the authors
investigate the extent to which LLMs [1] can perform in-context exploration in multi-armed bandit
problems. Similarly, other works [22, 75, 84, 45, 108] evaluate the in-context learning capabilities of
LLMs in sequential decision making problems, with [45] showing that LLMs can help at exploring
large action spaces with inherent semantics. On a different note, in [3] investigate how to use LLMs
to implement PSRL, leveraging the full expressivity and fluidity of natural language to express the
prior and current knowledge about the problem.

In [25] the authors presente ICEE (In-Context Exploration Exploitation), a method closely related to
ICPE. ICEE uses Transformer architectures to perform in-context exploration-exploration for RL.
ICEE tackles this challenge by expanding the framework of return conditioned RL with in-context
learning [18, 32]. Return conditioned learning is a type of technique where the agent learns the
return-conditional distribution of actions in each state. Actions are then sampled from the distribution
of actions that receive high return. This methodoloy was first proposed for the online RL setting by
work on Upside Down RL [107] and Reward Conditioned Policies [60]. Lastly, we note the important
contribution of RL2 [31], which proposes to represent an RL policy as the hidden state of an RNN,
whose weights are learned via RL. ICPE employs a similar idea, but focuses on a different objective
(identification), and splits the process into a supervised inference network that provides rewards to an
RL-trained transformer network that selects actions to maximize information gain.

Active Pure Exploration in Bandit and RL Problems. Other strategies consider the pure explo-
ration problem [33, 5, 15, 54], or Best Arm Identification (BAI), in which the samples collected by the
agent are no longer perceived as rewards, and the agent must actively optimize its exploration strategy
to identify the optimal action. In this pure exploration framework, the task is typically formulated
as a hypothesis testing problem: given a desired goal, the agent must reject the hypothesis that
the observed data could have been generated by any environment whose behavior is fundamentally
inconsistent with the true environment [36]. This approach leads to instance-dependent exploration
strategies that adapt to the difficulty of the environment and has been extensively studied in the
context of bandit problems under the fixed confidence setting [33, 36, 28, 47, 98], where the objective
is to identify the optimal policy using the fewest number of samples while maintaining a specified
level of confidence. Similar ideas have been applied to Markov Decision Processes for identifying the
best policy [70, 69, 96, 99] or rapidly estimating the value of a given policy [95]. Another setting is
that of of identifying the best arm in MAB problems with a fixed horizon. In this case characterizing
the complexity of the problem is challenging, and this is an area of work that is less developed
compared to the fixed confidence one [115, 53, 5, 4, 83, 38]. Because of this reason, we believe ICPE
can help better understand the nuances of this specific setting.

However, while BAI strategy are powerful, they may be suboptimal when the underlying information
structure is not adequately captured within the hypothesis testing framework. Hence, the issue of
leveraging hidden environmental information, or problem with complex information structure remains
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a difficult problem. Although IDS and BAI techniques offer frameworks to account for such structure,
extending these approaches to Deep Learning is difficult, particularly when the information structure
is unknown to the learner.

A closely related work is that of [67]. In [67] the authors present empirical evidence of skills and
directed exploration emerging from using RL with a sparse reward and a contrastive loss. They define
a goal state, and encode a sparse reward using that goal state. Their objective, which maximizes the
probability of reaching the goal state, is similar to ours, where in our framework the goal state would
be a hypothesis. Note, however, that they do not learn an inference network, and we do not assume
the observations to possess the Markov property.

Active Learning and Active Sequential Hypothesis Testing In the problem of active sequential
hypothesis testing [21, 37, 65, 81, 82, 77, 34], a learner is tasked with adaptively performing a
sequence of actions to identify an unknown property of the environment. Each action yields noisy
feedback about the true hypothesis, and the goal is to minimize the number of samples required to
make a confident and correct decision. Similarly, active learning [23, 19] studies the problem of data
selection, and, closely related, Bayesian Active Learning [39], or Bayesian experimental design [92],
studies how to adaptively select from a number of expensive tests in order to identify an unknown
hypothesis sampled from a known prior distribution.

Active sequential hypothesis testing generalizes the pure exploration setting in bandits and RL by
allowing for the identification of arbitrary hypotheses, rather than just the optimal action. However,
most existing approaches assume full knowledge of the observation model [81], which is the distribu-
tion of responses for each action under each hypothesis. While some work has attempted to relax this
assumption to partial knowledge [17], it remains highly restrictive in practice. As in bandit settings,
real-world exploration and hypothesis testing often proceed without access to the true observation
model, requiring strategies that can learn both the structure and the hypothesis from interaction alone.

Algorithm Discovery. Our method is also closely related to the problem of discovering algorithms
[86]. In fact, one can argue that ICPE is effectively discovering active sampling techniques. This is
particularly important for BAI and Best Policy Identification (BPI) problems, where often one needs
to solve a computationally expensive optimization technique numerous times. For BPI the problem is
even more exacerbated, since the optimization problem is usually non-convex [70, 95].

Cognitive Theories of Exploration. Our approach draws inspiration from cognitive theories of
exploration. Indeed, in animals, exploration arises naturally from detecting mismatches between
sensory experiences and internal cognitive maps—mental representations encoding episodes and
regularities within environments [87, 80]. Detection of novelty prompts updates of these cognitive
maps, a function strongly associated with the hippocampus [79, 66]. Conversely, exploration can
also be explicitly goal-directed: psychological theories posit that an internal representation of goals,
combined with cognitive maps formed through experience, guides adaptive action selection [52, 76].
ICPE embodies these cognitive principles computationally: the exploration (π) network learns an
internal model (analogous to a cognitive map), while the inference (I) network encodes goal-directed
evaluation. This interplay enables ICPE to effectively manage exploration as an adaptive, structure-
sensitive behavior.
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B Theoretical Results

In this section we provide different theoretical results, mainly for the sample complexity of different
MAB problems with structure.

B.1 Suboptimality of IDS

In pure exploration IDS [101] the main objective is to maximize the information gain. For example,
consider the BAI problem: we set αt(a) = P(Ĥ = a|Dt) to be the posterior distribution of the
optimal arm. Then, the information gain is defined through the following quantity

gt(a) = E[H(αt)−H(αt+1)|Dt, at = a],

which measures the expected reduction in entropy of the posterior distribution of the best arm due to
selecting arm a at time t.

For the BAI problem, the authors in [101] propose a myopic sampling policy at ∈ argmaxa gt(a),
which only considers the information gain from the next sample. The reason for using a greedy
policy stems from the fact that such a strategy is competitive with the optimal policy in problems
where the information gain satisfies a property named adaptive submodularity [39], a generalization
of submodular set functions to adaptive policies. For example, in the noiseless Optimal Decision
Tree problem, it is known [117] that a greedy strategy based on the information gain is equivalent
to a nearly-optimal [26, 40, 39] strategy named generalized binary search (GBS) [85, 10] , which
maximizes the expected reduction of the version space (the space of hypotheses consistent with the
data observed so far). However, for the noisy case both strategies perform poorly [40].

The myopic pure exploration IDS strategy at ∈ argmaxa gt(a) can perform poorly in environments
where the sampling decisions influence the observation distributions, or where an action taken at time
t can greatly affect the complexity of the problem at a later stage (hence, IDS can perform poorly on
credit assignments problems).

First example. As a first example, consider a bandit problem with K arms, where the reward
for each arm ai is distributed according to N (µi, 1), with priors µ1 = δ0 and µi ∼ U([0, 1])
independently for each i ∈ {2, . . . ,K}. Thus, almost surely, the optimal arm a⋆ lies within
{2, . . . ,K}, and the goal is to estimate a⋆

We introduce the following twist: if arm a1 is sampled exactly twice, its reward distribution changes
permanently to a Dirac delta distribution δϕ(a⋆), where ϕ is a known invertible mapping. Consequently,
sampling arm a1 twice fully reveals the identity of a⋆. However, if arm a1 has not yet been sampled,
the expected immediate information gain at any step t is zero, i.e., gt(a1) = 0, since arm a1 is already
known to be suboptimal. In contrast, the immediate information gain for any other arm remains
strictly positive. Therefore, under this setting and for nontrivial values of (σ,K), the myopic IDS
strategy cannot achieve the optimal constant sample complexity, and instead scales linearly in K.

Second example. Another example is a bandit environment containing a chain of two magic actions
{1,m}, where the index of the first magic action (1) is known. Action 1 reveals the index m, and
pulling arm m subsequently identifies the best arm with certainty. In this scenario, IDS is myopic
and typically neglects arm 1 because of its inability to plan more than 1-step ahead in the future.
However, depending on the total number of arms and reward variances, IDS may still select arm 1 if
doing so significantly reduces the set of candidate best arms faster than pulling other arms (e.g., if the
variance is significantly large). The following theorem illustrates the sub-optimality of IDS.
Theorem B.1. Consider a bandit environment with a chain of 2 magic actions. The reward of the
regular arms is N (µa, 1) with µa ∼ U([0, 1]), a ̸= 1,m. For K ≥ 5 there exists δ0 ∈ (0, 1/2) such
that for any δ ≤ δ0, we have that IDS is not sample optimal in the fixed confidence setting.

Proof of theorem B.1. Let Yt,a be the random reward observed upon selecting arm at = a . We use

that gt(a) = It(A
⋆;Yt,a) = KL

(
P(A⋆,Yt,a|Dt)

P(A⋆|Dt)P(Yt,a|Dt)

)
, with D1 containing an empty observation.

The proof relies on showing that action a1 is not chosen during the first two rounds for large values
of K.

In the proofs, for brevity, we write Pt(·) = P(·|Dt). Observe the following lemmas.
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Lemma B.2. Let Yt,a be the random reward observed upon selecting arm at = a and let St,a =
1{at = a is magic}. Under the assumption that the agent knows with absolute certainty that a is
magic after observing Yt,a, we have that It(A⋆;Yt,a) = It(A

⋆;Yt,a, St,a).

Proof. Note that
It(A

⋆;Yt,a, St,a) = Ht(Yt,a, St,a)−Ht(Yt,a, St|A⋆).

Note that by assumption we have that Ht(St,a|Yt,a) = 0. Then, the first term can also be rewritten as

Ht(Yt,a, St) = Ht(St,a|Yt,a) +Ht(Yt,a) = Ht(Yt, a).

Similarly, we also have Ht(Yt,a, St,a|A⋆) = Ht(St,a|Yt,a, A
⋆) + Ht(Yt,a|A⋆) = Ht(Yt,a|A⋆).

Henceforth
It(A

⋆;Yt,a, St,a) = Ht(Yt,a)−Ht(Yt,a|A⋆) = It(A
⋆;Yt,a).

Using the decomposition from the previous lemma we can rewrite the mutual information between
A⋆ and Yt,a as

It(A
⋆;Yt,a) = It(A

⋆;Yt,a, St,a) = It(A
⋆;Yt,a|St,a) + It(A

⋆;St,a).

Lemma B.3. Let Et = {(a1, . . . , at−1) are not magic actions}, with E1 = ∅. Under at = 1 we have

that It(A⋆;Yt,1|Et) = log
(

K−|At|
K−|At|−1

)
where At = {a|∃i < t : at = a} is the unique number of

actions chosen in t ∈ {1, . . . , t− 1}.

Proof. We use that Pt(St,1 = 1|at = 1) = 1. Hence, for arm 1 we have

It(A
⋆;St,1|Et) = KL (Pt(A

⋆, St,1|Et)||Pt(A
⋆|Et)Pt(St,1|Et)) ,

=
∑
a̸=1

P(A⋆ = a|St,1 = 1, Et) log
(
P(St,1 = 1|, A⋆ = a, Et)

Pt(St,1 = 1|Et)

)
,

= 0.

Then, we have

Yt(A
⋆;Yt,1|St,1, Et) = Y1(A

⋆;Yt,1|St,1 = 1, Et),
= KL (Pt(A

⋆, Yt,1|St,1 = 1, Et)||Pt(A
⋆|St,1 = 1, Et)Pt(Yt,1|St,1 = 1, Et)) ,

= KL (Pt(Yt,1|A⋆, St,1 = 1, Et)||Pt(Yt,1|St,1 = 1, Et)) ,

= log

(
1/(K − |At| − 1)

1/(K − |At|)

)
,

where we used that under Et exactly At regular arms have been pulled and recognised as regular; the
still-unrevealed set of candidates for the second magic arm has therefore size K − |At| − 1 (since
arm 1 is known to be magic). Thus the result follows from applying the previous lemma.

Lemma B.4. For any un-pulled arm a ̸= 1 at time t we have that It(A
⋆;Yt,a|Et) ≥

1
K−|At|−1 log(K − |At| − 1).

Proof. To compute the mutual information we use that It(A⋆;Yt,a|Et) = It(A
⋆;Yt,a, St,a|Et) =

It(A
⋆;Yt,a|St,a, Et) + It(A

⋆;St,a|Et). We start by computing the first term of this expression, and
finding a non-trivial lower bound.

First term It(A
⋆;Yt,a|St,a, Et). Note that for a ̸= 1 we have

It(A
⋆;Yt,a|St,a, Et) = Pt(St,a = 0|Et)It(A⋆;Yt,a|St,a = 0, Et)

+ Pt(St,a = 1|Et)It(A⋆;Yt,a|St,a = 1, Et),

≥ 1

K − |At| − 1
It(A

⋆;Yt,a|St,a = 1, Et),

where we used that under Et, we have a uniform prior over the remaining K − (t − 1) un-pulled
arms, and the agent knows that arm 1 is magic.
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If a ̸= 1 and St,a = 1, then a is the second magic arm. Therefore we have Pt(Yt,a|A⋆, St,a =
1, Et) = 1. Hence It(A

⋆;Yt,a|St,a = 1, Et) = log (K − |At| − 1) since Yt,a can only take values
uniformly over K − |At| − 1 arms under the event {St,a = 1, Et}.
Second term It(A

⋆;St,a|Et).We are only left with computing the following term

It(A
⋆;St,a|Et) = Et,A⋆,St,a

[
log

P(A⋆, St,a|Et)
P(A⋆|Et)P(St,a|Et)

]
,

=
∑

b∈{0,1}

Pt(St,a = b|Et)KL (Pt(St,a = b|A⋆, Et)||Pt(St,a = b|Et)) ,

≥ Pt(St,a = 1|Et)KL (Pt(St,a = 1|A⋆, Et)||Pt(St,a = 1|Et)) ,

=
1

K − |At| − 1
KL (Pt(St,a = 1|A⋆, Et)||Pt(St,a = 1|Et)) ,

=
1

K − |At| − 1

∑
j ̸={1,a}

Pt(St,a = 1|A⋆ = j, Et) log
Pt(St,a = 1|A⋆ = j, Et)

1/(K − |At| − 1)
,

=
1

K − |At| − 1

∑
j ̸={1,a}

1

K − t− 1
log

1/(K − |At| − 2)

1/(K − |At| − 1)
,

=
1

K − |At| − 1

K − 2

K − |At| − 2
log

1/(K − |At| − 2)

1/(K − |At| − 1)
,

≥ 1

K − |At| − 1
log

K − |At| − 1

K − |At| − 2
.

Conclusion. Finally, we can derive that

It(A
⋆;Yt,a|Et) = I1(A

⋆;Yt,a|St,a, Et) + It(A
⋆;St,a|Et),

≥ 1

K − |At| − 1
log(K − |At| − 1) +

1

K − |At| − 1
log

(
K − |At| − 1

K − |At| − 2

)
,

=
1

K − |At| − 1
log(K − |At| − 1).

Lemma B.5. Assume a1 = j is a regular arm, pulled at the first time-step. Then I2(A
⋆;Y2,j |a1 =

j) ≤ 1
2 ln(1 +

1
12σ2 ).

Proof. First, note that

I2(A
⋆;Y2,j | a1 = j) ≤ I2(µj ;Y2,j | a1 = j) = H2(Y2,j |a1 = j)− 1

2
ln(2πeσ2)

Then, since Var2(Y2,j |a1 = j) = Var2(µj |a1 = j) + σ2 ≤ 1/12 + σ2. Therefore H2(Y2,j |a1 =
j) ≤ 1

2 ln(2πe(1/12 + σ2)). Hence I2(A
⋆;Y2,j |a1 = j) ≤ 1

2 ln(1 +
1

12σ2 ).

Hence, one can verify that for K ≥ 4 the first magic arm will never be chosen at the first time-step.
Similarly, at the second time-step the first magic arm will not be chosen if K ≥ 5.

Consider the fixed-confidence setting with some confidence level δ < 1/2. Let A1 =
{second magic arm sampled at t = 1} and A2 = {second magic arm sampled at t = 2}. Then,
the sample complexity of IDS satisfies E[τIDS |Ac

1,Ac
2] ≥ 3 for δ sufficiently small (since the sample

complexity scales as log(1/(2.4δ))).

We also have that at the first time-step the decision is uniform over {2, . . . ,K}. Lastly, if the first
sampled arm is not magic, then it’s a regular arm, and by the previous lemmas the information gain
of such arm will be smaller than the information gain of another un-pulled arm. In fact the inequality

log(x− 2)

x− 2
>

1

2
ln(1 +

1

12
)
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it satisfied over x ∈ {4, . . . , 120}. Since it is sub-optimal to sample again the same regular arm Since
the information gain on all the other arms remains the same, we have that the decision at the second
time-step is again uniform over the remaining unchosen arms. Therefore

E[τIDS ] = E[τIDS |A1]P(A1) + E[τIDS |Ac
1]P(Ac

1),

=
1

K − 1
+

K − 2

K − 1
E[τIDS |Ac

1],

=
1

K − 1
+

K − 2

K − 1

(
E[τIDS |Ac

1,A2]
1

K − 2
+ E[τIDS |Ac

1,Ac
2]
K − 3

K − 2

)
,

≥ 1

K − 1
+

K − 2

K − 1

(
2

1

K − 2
+ 3

K − 3

K − 2

)
,

=
3

K − 1
+ 3

K − 3

K − 1
,

which is larger than 2 for K > 4. Since there is a policy with sample complexity 2, we have that IDS
cannot be sample optimal for K ∈ {5, . . . , 120}.
Similarly, for large values of K > 120, resampling the same regular arm at the second timestep leads
IDS to a sample complexity larger than 2. And therefore cannot be sample optimal.

B.2 Sample Complexity Bounds for MAB Problems with Fixed Minimum Gap

We now derive a sample complexity lower bound for a MAB problem where the minimum gap is
known and the rewards are normally distributed.

Consider a MAB problem wit K arms {1, . . . ,K}. To each arm a is associated a reward distribution
νa = N (µa, σ

2) that is simply a Gaussian distribution. Let a⋆(µ) = argmaxa µa, and define the
gap in arm a to be ∆a(µ) = µa⋆(µ) − µa. In the following, without loss of generality, we assume
that a⋆(µ) = 1.

We define the minimum gap to be ∆min(µ) = mina̸=a⋆(µ) ∆a(µ). Assume now to know that
∆min ≥ ∆0 > 0.

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆(µ)) ≤ δ, we have the following result.
Theorem B.6. Consider a model µ satisfying ∆min ≥ ∆0 > 0. Then, for any δ-probably correct
method Alg, with δ ∈ (0, 1/2), we have that the optimal sample complexity is bounded as

1

max
(
∆2

0,
1∑

a̸=1 1/∆2
a

) ≤ inf
τ :Alg is δ-correct

Eµ[τ ]

2σ2kl(1− δ, δ)
≤ 2

∑
a

1

(∆a +∆0)2
,

with ∆1 = 0 and kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)). In particular, the solution
ωa ∝ 1/(∆a +∆0)

2 (up to a normalization constant) achieves the upper bound.

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the
same argument used in the Best Arm Identification and Best Policy Identification literature [36, 99].

Define the set of models
S =

{
µ′ ∈ RK : ∆min(µ

′) ≥ ∆0

}
,

and the set of alternative models

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= 1

}
.

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed
upon selecting At. Then, we can write

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)
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where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to
the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to
round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)

(note that we have σ1 instead of σ for a = 1).

We also know from the information processing inequality [54] that Eµ[Λτ ] ≥
supE∈Mτ

kl(Pµ(E),Pµ′(E)), where Mt = σ(A1, R1, . . . , At, Rt). We use the fact that the
algorithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since
Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ

′
a) ≤ δ (we also used

the monotonicity properties of the Bernoulli KL divergence). Hence∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).

Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing
over the set of alternative models.

Defining Alta =
{
µ′ ∈ RK : µ′a − µ′b ≥ ∆0 ∀b ̸= a

}
, the set of alternative models can be decom-

posed as

Alt(µ) =

{
µ′ ∈ RK : argmax

a
µ′a ̸= 1, ∆min(µ

′) ≥ ∆0

}
,

= ∪a̸=1Alta.

Hence, the optimization problem over the alternative models becomes

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a) = min

ā ̸=1
inf

µ′∈Altā

∑
a

ωa
(µa − µ′a)

2

2σ2
.

The inner infimum over µ′ can then be written as

P ⋆
ā (ω) := inf

µ′∈RK

∑
a

ωa
(µa − µ′a)

2

2σ2
.

s.t. µ′ā − µ′b ≥ ∆0 ∀b ̸= ā.

(7)

While the problem is clearly convex, it does not yield an immediate closed form solution.

To that aim, we try to derive a lower bound and an upper bound of the value of this minimization
problem.

Step 3: Upper bound on P ⋆
ā . Note that an upper bound on minā̸=1 P

⋆
ā (ω) can be found by finding a

feasible solution µ′. Consider then the solution µ′1 = µ1 −∆, µ′ā = µ1 and µ′b = µb for all other
arms. Clearly We have that µ′ā − µ′b ≥ ∆0 for all b ̸= ā. Hence, we obtain

min
ā̸=1

P ⋆
ā (ω) ≤ ω1

∆2
0

2σ2
+min

ā̸=1
ωā

∆2
ā

2σ2
.
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At this point, one can easily note that if ∆2
0

2σ2 ≥ 1
2σ2

∑
a ̸=1

1
∆2

a

, then supω∈∆(K) minā ̸=1 P
⋆
ā (ω) ≤

∆2
0

2σ2 .

This corresponds to the case where all the mass is given to ω1 = 1. Otherwise, the solution is to set
ω1 = 0 and ωa =

1/∆2
a∑

b 1/∆2
b

for a ̸= 1.

Hence, we conclude that

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≤

1

2σ2
max

(
∆2

0,
1∑

a ̸=1 1/∆
2
a

)
.

Step 4: Lower bound on P ⋆
ā . For the lower bound, note that we can relax the constraint to only

consider µ′ā − µ′1 ≥ ∆0. This relaxation enlarges the feasible set, and thus the infimum of this new
problem lower bounds P ⋆

ā (ω).

By doing so, since the other arms are not constrained, by convexity of the KL divergence at the
infimum we have µ′b = µb for all b /∈ {1, ā}. Therefore

P ⋆
ā (ω) ≥ inf

µ′:µ′
ā−µ′

1≥∆0

∑
a

ωa
(µa − µ′a)

2

2σ2
= inf

µ′:µ′
ā−µ′

1≥∆0

ω1
(µ1 − µ′1)

2

2σ2
+ ωā

(µā − µ′ā)
2

2σ2
.

Solving the KKT conditions we find the equivalent conditions µ′ā = µ′1 +∆0 and

ω1(µ1 − µ′1) + ωā(µā − µ′1 −∆0) = 0⇒ µ′1 =
ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
.

Therefore
µ′ā =

ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
+∆0 =

ω1µ1 + ωāµā + ω1∆0

ω1 + ωā
.

Plugging these solutions back in the value of the problem, we obtain

P ⋆
ā (ω) ≥

ω1ω
2
ā

(ω1 + ωā)2
(µ1 − µā +∆0)

2

2σ2
+

ωāω
2
1

(ω1 + ωā)2
(µā − µ1 −∆0)

2

2σ2
,

=
ω1ωā

ω1 + ωā

(µ1 − µā +∆0)
2

2σ2
,

=
ω1ωā

ω1 + ωā

(∆ā +∆0)
2

2σ2
.

Let θa = ∆a +∆0, with θ1 = ∆0. We plug in a feasible solution ωa =
1/θ2

a∑
b 1/θ2

b
, yielding

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≥ min

ā ̸=1

1/(θ1θā)
2∑

b 1/θ
2
b (1/θ

2
1 + 1/θ2ā)

θ2ā
2σ2

,

= min
ā ̸=1

1∑
b 1/θ

2
b (1 + θ21/θ

2
ā)

1

2σ2
,

=
1

2σ2
∑

b 1/θ
2
b

min
ā̸=1

1

1 + θ21/θ
2
ā

,

≥ 1

2σ2
∑

b 1/θ
2
b

1

1 + θ21/∆
2
0

,

=
1

4σ2
∑

b 1/θ
2
b

.

B.3 Sample Complexity Lower Bound for the Magic Action MAB Problem

We now consider a special class of models that embeds information about the optimal arm in the
mean reward of some of the arms. Let ϕ : R→ R be a strictly decreasing function over {2, . . . ,K}4.

Particularly, we make the following assumptions:
4One could also consider strictly increasing functions.
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1. We consider mean rewards µ satisfying µ1 = ϕ(argmaxa̸=1 µa), and µ⋆ = maxa µa >
ϕ(2). Arm 1 is called "magic action", and with this assumption we are guaranteed that the
magic arm is not optimal, since

µ1
1

maxa µa
= ϕ(argmax

a̸=1
µa)

1

maxa µa
≤ ϕ(2)

1

maxa µa
< 1⇒ max

a
µa > µ1.

2. The rewards are normally distributed, with a fixed known standard deviation σ1 for the
magic arm, and fixed standard deviation σ for all the other arms.

Hence, define the set of models

S =

{
µ ∈ RK : µ1 = ϕ(argmax

a̸=1
µa),max

a
µa > ϕ(2)

}
,

and the set of alternative models

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= a⋆

}
,

where a⋆ = argmaxa µa.

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆) ≤ δ, we have the following result.
Theorem B.7. For any δ-correct algorithm, the sample complexity lower bound on the magic action
problem is

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ), (8)
where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and T ⋆(µ) is the characteristic time of
µ, defined as

(T ⋆(µ))−1 = max
ω∈∆(K)

min
a̸=1,a⋆

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑

b∈Ka(ω)

ωb
(µb −m(ω;Ka(ω))

2

2σ2
, (9)

where m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

and the set Ka(ω) is defined as

Ka(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb ∪ {a}) and µb ≥ ϕ(2)} .

with Cx = {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K].

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the
same argument used in the Best Arm Identification and Best Policy Identification literature [36, 99].

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed
upon selecting At. Then, we can write

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to
the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to
round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)

(note that we have σ1 instead of σ for a = 1).

We also know from the information processing inequality [54] that Eµ[Λτ ] ≥
supE∈Mτ

kl(Pµ(E),Pµ′(E)), where Mt = σ(A1, R1, . . . , At, Rt). We use the fact that the
algorithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since
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Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ
′
a) ≤ δ (we also used

the monotonicity properties of the Bernoulli KL divergence). Hence∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).

Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing
over the set of alternative models. First, we observe that S = ∪a̸=a⋆{µ : µ1 = ϕ(a), µa > ϕ(2)}.
Therefore, we can write

Alt(µ) = ∪a/∈{1,a⋆} {µ′ : µ′1 = ϕ(a), µ′a > max(ϕ(2), µ′b) ∀b ̸= a} .

Hence, for a fixed a /∈ {1, a⋆}, the inner infimum becomes

inf
µ′∈RK

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
a̸=1

ωa
(µa − µ′a)

2

2σ2

s.t. µ′a ≥ max (ϕ(2), µ′b) ∀b,
µ′1 = ϕ(a).

(10)

To solve it, we construct the following Lagrangian

ℓ(µ′, θ) = ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
b̸=1

ωb
(µb − µ′b)

2

2σ2
+
∑
b

θb (max (ϕ(2), µ′b)− µ′a) ,

where θ ∈ RK
+ is the multiplier vector. From the KKT conditions we already know that θ1 = 0, θa = 0

and θb = 0 if µ′b ≤ ϕ(2), with b ∈ {2, . . . ,K}. In particular, we also know that either we have
µ′b = µ′a or µ′b = µb. Therefore, for µb ≤ ϕ(2) the solution is µ′b = µb, while for µb > ϕ(2) the
solution depends also on ω.

To fix the ideas, let K be the set of arms for which µ′b = µ′a at the optimal solution. Such set must
necessarily include arm a. Then, note that

∂ℓ

∂µ′a
= ωa

µ′a − µa

σ2
−
∑
b∈[K]

θb = 0.

and
∂ℓ

∂µ′b
= ωb

µ′b − µb

σ2
+ θb = 0 for b ̸= (1, a).

Then, using the observations derived above, we conclude that

µ′a =

∑
b∈K ωbµb∑
b∈K ωb

,

with µ′b = µ′a if b ∈ K, and µ′b = µb otherwise. However, how do we compute such set K?

First, K includes arm a. However, in general we have K ≠ {a} : if that were not true we would have
µ′a = µa and µ′b = µb for the other arms – but if any µb is greater than µa, then a is not optimal,
which is a contradiction. Therefore, also arm a⋆ is included in K, since any convex combination of
{µa} is necessarily smaller than µa⋆ . We apply this argument repeatedly for every arm b to obtain K.
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Hence, for some set C ⊆ [K] define the average reward

m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

,

and the set Cx = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K]. Then,

K := K(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb) and µb ≥ ϕ(2)} .

In other words, K is the set of confusing arms for which the mean reward in the alternative model
changes. An arm b is confusing if the average reward m, taking into account b, is smaller than µb. If
this holds for b, then it must also hold all the arms b′ such that µb′ ≥ µb.

As a corollary, we have the following upper bound on T ⋆(µ).
Corollary B.8. We have that

T ⋆(µ) ≤ min
ω∈∆(K)

max
a ̸=1,a⋆

2σ2
1

ω1(ϕ(a⋆)− ϕ(a))2
.

In particular, for ϕ(x) = 1/x and a⋆ < K we have

T ⋆(µ) ≤ 2σ2(a⋆(a⋆ + 1))2,

while for a⋆ = K we get T ⋆(µ) ≤ 2σ2(a⋆(a⋆ − 1))2.

Proof. Let f1(a) = (ϕ(a⋆)−ϕ(a))2
2σ2

1
. For every weight vector ω ∈ ∆(K) and every a ̸= 1, a⋆, the

quantity

ga(ω) = ω1f1(a) +
∑
b∈Ka

ωb
(µb −m(ω;Ka))

2

2σ2

satisfies ga(ω) ≥ ω1f1(a) because the variance term is non–negative. Hence

(T ⋆(µ))−1 = max
ω∈∆(K)

min
a̸=1,a⋆

ga(ω) ≥ max
ω∈∆(K)

ω1 min
a ̸=1,a⋆

f1(a).

Since ω1 ≤ 1, the right–hand side is lower bounded by ω1 = 1, giving

(T ⋆(µ))−1 ≥ min
a ̸=1,a⋆

f1(a) =
1

2σ2
1

min
a ̸=1,a⋆

(
ϕ(a⋆)− ϕ(a)

)2
.

Taking reciprocals yields

T ⋆(µ) ≤ 2σ2
1

min
a̸=1,a⋆

(ϕ(a⋆)− ϕ(a))2
= min

ω∈∆(K)
max
a ̸=1,a⋆

2σ2
1

ω1 (ϕ(a⋆)− ϕ(a))2
,

because the minimisation over ω clearly selects ω1 = 1. (This justifies the form stated in the
corollary.)

Specialising to ϕ(x) = 1/x. With ϕ(x) = 1/x the difference ϕ(a⋆)− ϕ(a) = 1
a⋆ − 1

a is positive for
all a > a⋆ and negative otherwise; its smallest non-zero magnitude is obtained for the closest index
to a⋆:

• If a⋆ < K, that index is a⋆ + 1, giving

min
a̸=1,a⋆

(ϕ(a⋆)− ϕ(a))2 =
( 1

a⋆
− 1

a⋆ + 1

)2
=

1[
a⋆(a⋆ + 1)

]2 .
• If a⋆ = K, the closest index is K − 1, leading to

min
a ̸=1,a⋆

(ϕ(a⋆)− ϕ(a))2 =
( 1

K − 1
− 1

K

)2
=

1[
a⋆(a⋆ − 1)

]2 .
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Plugging each expression in the general upper bound above concludes the proof.

Finally, to get a better intuition of the main result, we can look at the 3-arms case: it is optimal to
only sample the magic arm iff |ϕ(a⋆)− ϕ(a)| > σ1(µa⋆−µa)

2σ .
Lemma B.9. With K = 3 we have that ω1 = 1 if and only if

|ϕ(a⋆)− ϕ(a)| > σ1(µa⋆ − µa)

2σ
,

and ω1 = 0 if the reverse inequality holds.

Proof. With 3 arms, from the proof of the theorem we know that Ka(ω) = {a, a⋆} for all ω. Letting
m(ω) = ωaµa+ωa⋆µa⋆

ωa+ωa⋆
, we obtain

(T ⋆(µ))−1 = max
ω∈∆(3)

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

Clearly the solution is ω1 = 1 as long as

(ϕ(a⋆)− ϕ(a))2

2σ2
1

> max
ω:ωa+ωa⋆=1

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

To see why this is the case, let f1 = (ϕ(a⋆)−ϕ(a))2
2σ2

1
, f2(ωa, ωa⋆) = ωa(µa−m(ω))2

2σ2 and f3(ωa, ωa⋆) =

ωa⋆ (µa⋆−m(ω))2

2σ2 . Then, we can write

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)

[
ωaf2
1− ω1

+
ωa⋆f3
1− ω1

]
.

Being a convex combination, this last term can be upper bounded as

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

ωaf2
1− ω1

+
ωa⋆f3
1− ω1

)
.

Now, note that also the term inside the bracket is a convex combination. Threfore, let ωa = (1−ω1)α
and ωa⋆ = (1− ω1)(1− α) for some α ∈ [0, 1]. We have that

m(ω) =
(1− ω1)αµa + (1− ω1)(1− α)µa⋆

1− ω1
= αµa + (1− α)µa⋆ .

Hence, we obtain that

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2(1− ω1)σ2
=

ωaf2 + ωa⋆f3
1− ω1

,

=
α(1− α)2(µa − µa⋆)2 + (1− α)α2(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(1− α)(µa − µa⋆)2 + α(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(µa − µa⋆)2

2σ2
.

Since this last term is maximized for α = 1/2, we obtain

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

(µa − µa⋆)2

8σ2

)
.

Since f1 is attained for ω1 = 1, we have that as long as f1 > (µa−µa⋆ )2

8σ2 , then the solution is ω1 = 1.

On the other hand, if (µa−µa⋆ )2

8σ2 > f1, then we can set ωa = (1 − ω1)/2 and ωa⋆ = (1 − ω1)/2,
leading to

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)
(µa − µa⋆)2

8σ2
,

which is maximized at ω1 = 0.
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B.4 Sample Complexity Bound for the Multiple Magic Actions MAB Problem

We now extend our analysis to the case where multiple magic actions can be present in the environment.
In contrast to the single magic action setting, here a chain of magic actions sequentially reveals
information about the location of the optimal action. Without loss of generality, assume that the first
n arms (with indices 1, . . . , n) are the magic actions, and the remaining K − n arms are non–magic.
The chain structure is such that pulling magic arm j (with 1 ≤ j < n) yields information about only
the location of the next magic arm j + 1, while pulling the final magic action (arm n) reveals the
identity of the optimal action. As before, we assume that the magic actions are informational only
and are never optimal.

To formalize the model, let ϕ : {1, . . . , n} → R be a strictly decreasing function. We assume that the
magic actions have fixed means given by

µj =

ϕ(j + 1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{1,...,n} µa

)
, if j = n.

and that the non–magic arms satisfy

µ⋆ = max
a/∈{1,...,n}

µa > ϕ(n).

Thus, the optimal arm lies among the non–magic actions. Considering the noiseless case where the
rewards of all actions are fixed and the case where we can identify if an action is magic once revealed,
we have the following result.

Theorem B.10. Consider noiseless magic bandit problem with K arms and n magic actions. The
optimal sample complexity is upper bounded as

inf
Alg

EAlg[τ ] ≤ min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) .

Proof. In the proof we derive a sample complexity bound for a policy based on some insights. We
use the assumption that upon observing a reward from a magic arm, the learner can almost surely
identify that the pulled arm is a magic arm.

Let us define the state (m, r, l), where m denotes the number of remaining unrevealed magic actions
(m0 = n− 1), r denotes the number of remaining unrevealed non-magic actions (r0 = K − n), and
l is the binary indicator with value 1 if we have revealed any hidden magic action and 0 otherwise.

Before any observation the learner has no information about which n− 1 indices among {2, . . . ,K}
form the chain of intermediate magic arms. Hence, one can argue that at the first time-step is optimal
to sample uniformly at random an action in {2, . . . ,K}.
Upon observing a magic action, and thus we are in state (m, r, 1), we consider the following candidate
policies: (1) start from the revealed action and follow the chain, or (2) keep sampling unrevealed
actions uniformly at random until all non-magic actions are revealed. As previously discussed,
starting the chain from the initial magic action would be suboptimal and we do not consider it.

Upon drawing a hidden magic arm, let its chain index be j ∈ {2, . . . , n} (which is uniformly
distributed). The remaining cost to complete the chain is n− j, and hence its expected value is

E[n− j] =
n− 2

2
.

Therefore, the total expected cost for strategy (1) is

T1 =
n− 2

2
.

We can additionally compute the expected cost for strategy (2) as follows: if the last non-magic action
is revealed at step i, then among the first i− 1 draws there are exactly r − 1 non-magic arms. Since
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there are
(
m+r
r

)
ways to place all r non-magic arms m+ r slots, we have

T2 = E[Draws until all non-magic revealed]

=

m+r∑
i=r

i · P[Last non-magic revealed at step i]

=

m+r∑
i=r

i ·
(
i−1
r−1
)(

m+r
r

)
=

r! ·m!

(m+ r)!

m+r∑
i=r

i

(
i− 1

r − 1

)

=
r! ·m!

(m+ r)!

m+r∑
i=r

i!

(r − 1)!(i− r)!

=
r! ·m!

(m+ r)!

m+r∑
i=r

r

(
i

r

)
=

r · r! ·m!

(m+ r)!

(
m+ r + 1

r + 1

)
=

r · r! ·m!

(m+ r)!
· (m+ r + 1) · (m+ r)!

(r + 1) · r! ·m!

=
r(m+ r + 1)

r + 1

Finally, we define a policy in (m, r, 1) as the one choosing between strategy 1 and strategy 2,
depending on which one achieves the minimum cost. Hence, the complexity of this policy is

V (m, r, 1) = min

(
n− 2

2
,
r(m+ r + 1)

r + 1

)
.

Now, before finding a magic arm, consider a policy that uniformly samples between the non-revealed
arms. Therefore, in (m, r, 0) we can achieve a complexity of 1+ m

m+rV (m−1, r, 1)+ r
m+rV (m, r−

1, 0). Since we can always achieve a sample complexity of n, we can find a policy with the following
complexity:

V (m, r, 0) = min

(
n, 1 +

m

m+ r
V (m− 1, r, 1) +

r

m+ r
V (m, r − 1, 0)

)
= min

(
n, 1 +

m

m+ r
min

(
n− 2

2
,
r(m+ r)

r + 1

)
+

r

m+ r
V (m, r − 1, 0)

)

Given we always start with n− 1 hidden magic actions we can define a recursion in terms of just the
variable r as follows:

V (r) = 1 +
n− 1

n− 1 + r
T (r) +

r

n− 1 + r
V (r − 1),

where T (r) = min
(

n−2
2 , r(n−1+r)

r+1

)
. Letting A(r) = r

n−1+r and B(r) = 1 + n−1
n−1+rT (r), we can

write

V (r) = B(r) +A(r)V (r − 1),
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Clearly V (0) = 0 since if all non-magic actions are revealed, then we know the optimal action
deterministically. Unrolling the recursion we get

V (1) = B(1),

V (2) = B(2) +A(2)B(1),

V (3) = B(3) +A(3)B(2) +A(3)A(2)B(1),

...

V (r) =

r∑
j=1

 r∏
i=j+1

A(i)

B(j).

Substituting back in our expression, we get

V (r) =

r∑
j=1

 r∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
T (j)

)
.

Thus starting at r = K − n we get the following expression:

min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) ,

which is also an upper bound on the optimal sample complexity.

To get a better intuition of the result, we also have the following corollary, which shows that we
should expect a scaling linear in n for small values of n (for large values the complexity tends instead
to "flatten").
Corollary B.11. Let T be the scaling in theorem B.10. We have that

min(n, (K − n)/2) ≲ T ≲ Cmin(n,K/2).

Proof. First, observe the scaling(
1 +

n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

))
= O(n/2).

At this point, note that
K−n∏
i=j+1

i

n− 1 + i
=

K−n∏
i=j+1

(
1 +

n− 1

i

)−1
.

Using that x
1+x ≤ log(1 + x) ≤ x, we have

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≥ −(n− 1)

K−n∑
i=j+1

1

i
.

and

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≤ −(n− 1)

K−n∑
i=j+1

1

n− 1 + i
.

Define Hn =
∑n

i=1 1/i to be the n-th Harmonic number, we also have
K−n∑
i=j+1

1

i
= HK−n −Hj .

Therefore

−(n− 1)(HK−n −Hj) ≤ log

K−n∏
i=j+1

i

n− 1 + i
≤ −(n− 1)(HK−1 −Hn+j−1)
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Using that Hℓ ∼ log(ℓ) + γ +O(1/ℓ), where γ is the Euler–Mascheroni constant, we get(
j

K − n

)n−1

≲
K−n∏
i=j+1

i

n− 1 + i
≲

(
n+ j − 1

K − 1

)n−1

.

Therefore, we can bound
∑K−n

j=1

(
n+j−1
K−1

)n−1
using an integral bound

K−n∑
j=1

(
n+ j − 1

K − 1

)n−1

≤
∫ K−n

0

(
n+ x

K − 1

)n−1

dx ≤ e(K − 1)

n
.

From which follows that the original expression can be upper bounded by an expression scaling as
O(min(n, (K − 1)/2)).

Similarly, using that
∑K−n

j=1

(
j

K−n

)n−1
≥ (K − n)/n, we have that the lower bound scales as

min(n, (K − n)/2).
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C Algorithms

In this section we present some of the algorithms more in detail. These includes: ICPE with fixed
horizon, I-DPT and I-IDS.

MDP Formulation for ICPE. Recall that in ICPE we treat trajectories of dataDt = (x1, a1, . . . , xt)
as sequences to be given as input to sequential models, such as Transformers. We treat trajectories
as states of an MDP M . An environment M can be then modeled as an MDP, which is a sequential
model characterized by a tuple M = (S,A, P ′, r,H⋆

M , ρ), where S is the state space, A the action
space, P ′ : S ×A → ∆(S) is the transition function, r : S → [0, 1] defines the reward function (to
be defined later), H⋆ ∈ H is the true hypothesis in M and ρ is the initial state distribution.

We define the state at time-step t as st = (Dt,∅t:N ), with ∅t:N indicating a null sequence of tokens
for the remaining steps up to some pre-defined horizon N , with s1 = (x1,∅1:N ).

To be more precise, letting (s∅t , a
∅
t ) denote, respectively, the null elements in the state and action at

time-step t, we have ∅t:t+k = {s∅t , a∅t+1, s
∅
t+1, · · · , a

∅
t+k−1, s

∅
t+k}.

The limit N is a practical upper bound on the horizon that limits the dimensionality of the state,
which is introduced for implementing the algorithm. The action space remains A, and the transition
dynamics P ′ are induced by (ρ, P ).

C.1 ICPE with Fixed Confidence

Recall that Dt = (x1, a1, . . . , xt−1, at−1, xt) and Ĥτ ∼ I(·|Dτ ). In the fixed confidence setting
(eq. (1)), problems terminate at some random point in time τ , chosen by the learner, or when the
maximum horizon N is reached. We model this by giving πt an additional stopping action astop such
that πt : Dt → A ∪ {astop} so that the data collection processes terminates at the stopping-time
τ = min(N, tstop), with tstop := inf{t ∈ N : at = astop}.
Optimizing the dual formulation

min
λ≥0

max
I,π

Vλ(π, I)

can be viewed as a multi-timescale stochastic optimization problem: the slowest timescale updates
the variable λ, an intermediate timescale optimizes over I , and the fastest refines the policy π.

Algorithm 2 ICPE (In-Context Pure Exploration) - Fixed Confidence

1: Input: Tasks distribution P(M); confidence δ; learning rates α, β; initial λ and hyper-parameters T,N, η.
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) with hypothesis H⋆, observe s1 ∼ ρ and set t← 1.
5: for t = 1, . . . , N − 1 do
6: Execute action at = argmaxa Qθ(st, a) in M and observe next state st+1.
7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal}, H⋆) to B.
8: If at = astop, break the loop.
9: end for

10: Update variable λ according to

λ← max (0, λ− β (Iϕ(H
⋆|sτ+1)− 1 + δ) . (11)

11: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
1{a̸=astop} (yλ(z)−Qθ(s, a))

2 + (rλ(zstop)−Qθ(s, astop))
2
]
, (12)

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[log(Iϕ(H
⋆|s)] . (13)

12: Update θ̄ ← (1− η)θ̄ + ηθ and every T steps set ϕ̄← ϕ.
13: end while
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MDP Formulation. We can use the MDP formalism to define an RL problem: we define a reward
r that penalizes the agent at all time-steps, that is rt = −1, while at the stopping-time we have
rτ = −1 + λEH∼I(·|sτ )[h(H;M)]. Hence, a trajectory’s return can be written as

Gτ =

τ∑
t=1

rt = −τ + 1 + r(sτ , aτ )︸ ︷︷ ︸
rτ

= −τ + λI(H⋆|sτ ).

Accordingly, one can define the Q-value of (π, I, λ) in a state-action pair (s, a) at the t-th step as
Qπ,I

λ (s, a) = Eπ
M∼P(M)

[∑τ
n=t rn

∣∣∣st = s, at = a
]
, with an ∼ πn(·|sn)

Optimization over ϕ. We treat each optimization separately, employing a descent-ascent scheme.
The distribution I is modeled using a sequential architecture parameterized by ϕ, denoted by Iϕ.
Fixing (π, λ), the inner maximization in eq. (3) corresponds to

max
ϕ

Eπ
M∼P(M)[h(Ĥτ ;M)], with Ĥτ ∼ Iϕ(·|sτ ).

We train ϕ via cross-entropy loss:

−
∑
H′

h(H ′;M) log Iϕ(H
′|sτ ) = − log Iϕ(H

⋆|sτ ),

averaged across environments. Alternatively, a MAP estimator may be used with the same loss.

Optimization over π. The policy π is defined as the greedy policy with respect to learned Q-values.
Therefore, standard RL techniques can learn the Q-function that maximizes the value in eq. (3)
given (λ, I). Denoting this function by Qθ, it is parameterized using a sequential architecture with
parameters θ.

We train Qθ using DQN [73, 111], employing a replay buffer B and a target network Qθ̄ parameterized
by θ̄. To maintain timescale separation, we introduce an additional inference target network Iϕ̄,
parameterized by ϕ̄, which provides stable training feedback for θ. When (I, λ) are fixed, optimizing
π reduces to maximizing:

−τ + λ log Iϕ(H
⋆|sτ ).

Hence, we define the reward at the transition z = (s, a, s′, d,H⋆) (with the convention that s′ ← s if
a = astop) as:

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|s′),

where d = 1{z is terminal} (z is terminal if the transition corresponds to the last time-step in
a horizon, or a = astop). Furthermore, for a transition z = (s, a, s′, d,H⋆) we define zstop :=
z|(a,s′)←(astop,s) as the same transition z with a← astop and s′ ← s.

There is one thing to note: the logarithm in the reward is justified since the original problem can be
equivalently written as:

min
λ≥0

max
I,π
−Eπ

M∼P(M)[τ ] + λ
[
log
(
Pπ
M∼P(M)(h(Ĥτ ;M) = 1)

)
− log(1− δ)

]
,

after noting that we can apply the logarithm to the constraint in eq. (3), before considering the dual.
Thus the optimal solutions (I, π) remain the same.

Then, using classical TD-learning [109], the training target for a transition z = (s, a, s′, d,H⋆) can
be defined as:

yλ(z) = rλ(z) + (1− d)γmax
a′

Qθ̄(s
′, a′),

where γ ∈ (0, 1] is the discount factor.

As discussed earlier, we have a dedicated stopping action astop, whose value depends solely on history.
Thus, its Q-value is updated retrospectively at any state s using an additional loss:

(rλ(zstop)−Qθ(s, astop))
2
.

Therefore, the overall loss that we consider for θ for a single transition z can be written as

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,
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where 1{a̸=astop} avoids double accounting for the stopping action.

To update parameters (θ, ϕ), we sample independent batches (B,B′) ∼ B from the replay buffer and
apply gradient updates as specified in eqs. (5) and (6) of algorithm 1. Target networks are periodically
updated, with ϕ̄← ϕ every M steps, and θ̄ using Polyak averaging: θ̄ ← (1− η)θ̄ + ηθ, η ∈ (0, 1).

Optimization over λ. Finally, we update λ by assessing the confidence of Iϕ at the stopping time
according to eq. (4), maintaining a slow ascent-descent optimization schedule for sufficiently small
learning rates.

Implementation with the MAP estimator. A practical implementation may consider to use the
MAP estimator Ĥτ = argmaxH Iϕ(H|sτ ), which is what we do in practice, since it results in a
lower variance estimator. We note that the loss function for Iϕ, and the reward for Qθ, as defined
above, still yield the same optimal solution.

Cost implementation. Lastly, in practice, we optimize a reward rλ(z) = −c + dIϕ̄(H
⋆|s′), by

setting c = 1/λ, and noting that for a fixed λ the RL optimization remains the same. The reason why
we do so is due to the fact that with this expression we do not have the product λEH′∼Iϕ [h(H

′;M)],
which makes the descent-ascent process more difficult.

We also use the following cost update

ct+1 = ct − β(1− δ − Iϕ(H
⋆
M |sτ+1)),

or ct+1 = ct − β(1 − δ − h(Ĥτ ;M)) if one uses the MAP estimator. To see why the cost can be
updated in this way, define the parametrization λ = e−x. Then the optimization problem becomes

min
x

max
I

min
π
−Eπ

M∼P(M)[τ ] + e−x
[
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ

]
,

Letting ρ = Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ, the gradient update for x with a learning rate β

simply is
xt+1 = xt − βe−xtρ,

implying that
− log(λt+1) = − log(λt)− βλtρ.

Defining ct = 1/λt, we have that

log(ct+1) = log(ct)− (βρ/ct)⇒ ct+1 = cte
βρ/ct .

Using then the approximation ex ≈ 1+x, we find ct+1 = ct +βρ = ct−β(1− δ− Iϕ(H
⋆
M |sτ+1)).

Training vs Deployment. Thus far, our discussion of ICPE has focused on the training phase. After
training completes, the learned policy π and inference network I can be deployed directly: during
deployment, π both collects data and determines when to stop—either by triggering its stopping
action or upon reaching the horizon N .

C.2 ICPE with Fixed Horizon

In the fixed horizon setting (problem in eq. (2)) the MDP terminates at time-step N , and we set
the reward to be rt = 0 for t < N and rN = h(ĤN ;M), where ĤN ∼ I(·|DN ) (or Ĥn =
argmaxH∈H I(H|DN )) is the inferred hypothesis. Accordingly, one can define the value of (π, I)
in a state-action pair (s, a) (at time-step t) as before, and therefore we obtain that Qπ,I

t (s, a) =

Pπ
M∼P(M)

(
h(ĤN ;M) = 1

∣∣∣st = s, at = a
)

. Accordingly, we also define the value of (π, I) at the

first time-step in state s as V π,I(s) = Ea∼π1(·|s)[Q1(s, a)].

Therefore, averaging over the initial state s ∼ ρ, we find the overall value of (π,E), which corre-
sponds to

V (π, I) = Es∼ρ[V
π,e
M (s)] = Pπ

M∼P(M)

(
h(I(ĤN ;M) = 1

)
. (14)

This term V (π, I) is exactly the overall probability of correctness, the quantity maximized in eq. (2).
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Algorithm 3 ICPE (In-Context Pure Explorer) - Fixed Horizon

1: Input: Tasks distribution P(M); horizon N ; learning rate α and hyper-parameters (γ,M, η).
2: Initialize buffer B, networks Qθ, Eϕ and set Qθ̄ ← Qθ, Eϕ̄ ← Eϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) and observe s1 ∼ ρ.
5: for t = 1, . . . , N − 1 do
6: Execute action at = argmaxa Qθ(st, a) and observe next state st+1

7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal}, H⋆) to B.
8: end for
9: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
(yλ(z)−Qθ(s, a))

2
]
,

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[log(Iϕ(H
⋆|s′)] .

10: Update θ̄ ← (1− η)θ̄ + ηθ and every M steps set ϕ̄← ϕ.
11: end while

Practical implementation. The practical implementation for the fixed horizon follows closely that
of the fixed confidence setting, and we refer the reader to that section for most of the details. In this
case the reward in a transition z = (s, a, s′, d,H⋆) is defined as as:

rλ(z) := d logEH′∼Iϕ̄(·|s′)[h(H
′;M)] = d log Iϕ̄(H

⋆|s′), (15)

where d = 1{s′ terminal} (i.e., the last state observed in a trajectory). Note that we can use the
logarithm, since solving the original problem is also equivalent to solving But note that the original
problem is also equivalent to solving

max
I

max
π

log
(
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

))
, (16)

due to monotonicity of the logarithm.

The Q-values can be learned using classical TD-learning techniques [109]: to that aim, for a transition
z = (s, a, s′, d,H⋆), we define the target:

yλ(z) = rλ(z) + (1− d)max
a′

Qθ̄(s
′, a′). (17)

Then, the gradient updates are the same as for the fixed confidence setting.

C.3 Other Algorithms

In this section we describe Track and Stop (TaS) [36], and some variants such as I-IDS, I-DPT and
the explore then commit variant of ICPE.

C.3.1 Track and Stop

Track and Stop (TaS, [36]) is an asymptotically optimal as δ → 0 for MAB problems. For simplicity,
we consider a Gaussian MAB problem with K actions, where the reward of each action is normally
distributed according to N (µa, σ

2), and let µ = (µa)a∈[K] denote the model. The TaS algorithm
consists of: (1) the model estimation procedure and recommender rule; (2) the sampling rule, dictating
which action to select at each time-step; (3) the stopping rule, defining when enough evidence has been
collected to identify the best action with sufficient confidence, and therefore to stop the algorithm.

Estimation Procedure and Recommender Rule The algorithm maintains a maximum likelihood
estimate µ̂a(t) of the average reward for each arm based on the observations up to time t. Then, the
recommender rule is defined as ât = argmaxa µ̂a(t).
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Sampling Rule. The sampling rule is based on the observation that any δ-correct algorithm, that is
an algorithm satisfying P(âτ = a⋆) ≥ 1− δ, with a⋆ = argmaxa µa, satisfies the following sample
complexity

E[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
a ̸=a⋆

ωa⋆ωa

ωa + ωa⋆

∆2
a

2σ2
,

with ∆a = µa⋆−maxa̸=a⋆ µa. Interestingly, to design an algorithm with minimal sample complexity,

we can look at the solution ω⋆ = arg infω∈∆(K) T (ω;µ), with (T (ω))−1 = mina̸=a⋆
ωa⋆ωa

ωa+ωa⋆

∆2
a

2σ2 .

The solution ω⋆ provides the best proportion of draws, that is, an algorithm selecting an action a with
probability ω⋆

a matches the lower bound and is therefore optimal with respect to T ⋆. Therefore, an idea
is to ensure that Nt/t tracks ω⋆, where Nt is the visitation vector N(t) := [N1(t) . . . NK(t)]

⊤.

However, the average rewards (µa)a are initially unknown. A commonly employed idea [36, 54] is to
track an estimated optimal allocation ω⋆(t) = arg infω∈∆(K) T (ω; µ̂(t)) using the current estimate
of the model µ̂(t).

However, we still need to ensure that µ̂(t)→ µ. To that aim, we employ a D-tracking rule [36], whcih
guarantees that arms are sampled at a rate of

√
t. If there is an action a with Na(t) ≤

√
t−K/2 then

we choose at = a. Otherwise, choose the action at = argmina Na(t)− tω⋆
a(t).

Stopping rule. The stopping rule determines when enough evidence has been collected to determine
the optimal action with a prescribed confidence level. The problem of determining when to stop can
be framed as a statistical hypothesis testing problem [20], where we are testing between K different
hypotheses (Ha : (µa > maxb ̸=b µa))a.

We consider the following statistic L(t) = tT (N(t)/t; µ̂(t))−1, which is a Generalized Likelihood
Ratio Test (GLRT), similarly as in [36]. Comparing with the lower bound, one needs to stop as soon
as L(t) ≥ kl(δ, 1− δ) ∼ ln(1/δ). However, to account for the random fluctuations, a more natural
threshold is β(t, δ) = ln((1 + ln(t))/δ), thus we use L(t) ≥ β(t, δ) for stochastic MAB problems.
We also refer the reader to [55] for more details.

C.3.2 I-IDS

We implement a variant of Information Directed Sampling (IDS) [101], where we use the inference
network Iϕ learned during ICPE training as a posterior over optimal arms. This approach enables
IDS to exploit latent structure in the environment without explicitly modeling it via a probabilistic
model; instead, the learned I-network implicitly captures such structure.

Algorithm 4 I-IDS

1: Input: Pre-trained inference network Iϕ; prior means and variances µa, σ
2
a for all a ∈ A; target

error threshold δ
2: Initialize: fa(x) = N (x | µa, σ

2
a) for each a

3: for t = 1, 2, . . . do
4: if maxa Iϕ(a | Dt−1) ≥ 1− δ then
5: return argmaxa Iϕ(a | Dt−1)
6: end if
7: for each arm a ∈ A do
8: Approximate information gain:

gt(a) = H (Iϕ(· | Dt−1))− Er∼p(r|a,Dt−1) [H (Iϕ(· | Dt−1, a, r))]

9: end for
10: Select action at = argmaxa gt(a)
11: Observe reward rt
12: Update dataset Dt = Dt−1 ∪ {(at, rt)}
13: end for
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By using the same inference network in both ICPE and I-IDS, we directly compare the exploration
policy learned by ICPE to the IDS heuristic applied on top of the same posterior distribution. While
computing the expected information gain in IDS requires intractable integrals, we approximate them
using a Monte Carlo grid of 30 candidate reward values per action. The full pseudocode for I-IDS is
given in Algorithm 4.

C.3.3 In-Context Explore-then-Commit

We implement an ICPE variant for regret minimization via an explore-then-commit framework. This
method reuses the exploration policy and inference network learned during fixed-confidence training.
The agent interacts with the environment using the learned exploration policy until it selects the
stopping action. At that point, it commits to the arm predicted to be optimal by the I-network and
repeatedly pulls that arm for the remainder of the episode. The full pseudo-code is provided in
Algorithm 5.

Algorithm 5 In-Context Explore-then-Commit

1: Input: Environment M ∼ P(M); pre-trained critic network Qθ; pre-trained inference network
Iϕ

2: Initialize stopped← False
3: Observe initial state s1 ∼ ρ
4: for t = 1 to N do
5: if stopped = False and astop ̸= argmaxa Qθ(st, a) then
6: Execute at = argmaxa Qθ(st, a) and observe st+1

7: else if stopped = False and astop = argmaxa Qθ(st, a) then
8: Set stopped← True
9: Execute at = argmaxa Iϕ(st) and observe st+1

10: else
11: Execute at = argmaxa Iϕ(st) and observe st+1

12: end if
13: end for

C.3.4 I-DPT

We implement a variant of DPT [64] using the inference network. The idea is to act greedily with
respect to the posterior distribution I at inference time.

First, we train I using ICPE. Then, at deployment we act with respect to I: in round t we selection
action at = argmaxH I(H|Dt). Upon observing xt+1, we update Dt+1 and stop as soon as
argmaxH I(H|Dt) ≥ 1− δ.

C.4 Transformer Architecture

Here we briefly describe the architecture of the inference network I and of the network Q.

Both networks are implemented using a Transformer architecture. For the inference network, it is
designed to predict a hypothesis H given a sequence of observations. Let the input tensor be denoted
by X ∈ RB×H×m, where:

• B is the batch size,

• H is the sequence length (horizon), and

• m = (d+ |A|), where d is the dimensionality of each observation xt.

The inference network operates as follows:

1. Embedding Layer: Each observation vector mt = (xt, at) is first embedded into a higher-
dimensional space of size de using a linear transformation followed by a GELU activation:
ht = GELU(Wembedmt + bembed), ht ∈ Rde .
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Input X ∈ RB×H×d

Embedding Layer Linear + GELU

Transformer
(GPT-2)

Output LayerLinear

Log-softmax
log p(H|X)

Last hidden state

Figure 7: Model architecture for the inference network I (similarly for Q).

2. Transformer Layers: The embedded sequence h ∈ RB×H×de is then passed through
multiple Transformer layers (specifically, a GPT-2 model configuration). The Transformer
computes self-attention over the embedded input to model dependencies among observations:

h′ = Transformer(h), h′ ∈ RB×H×de .

3. Output Layer: The final hidden state corresponding to the last element of the sequence
(h′:,−1,:) is fed into a linear output layer that projects it to logits representing the hypotheses:

o = Wouth
′
:,−1,: + bout, o ∈ RB×|H|.

4. Probability Estimation: The output logits are transformed into log-probabilities via a
log-softmax operation along the last dimension

log p(H|X) = log_softmax(o).

For Q, we use the same architecture, but do not take a log-softmax at the final step.
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D Experiments

This section provides additional experimental results, along with detailed training and evaluation
protocols to ensure clarity and reproducibility. All experiments were conducted using four NVIDIA
A100 GPUs.

For more informations about the hyper-parameters, we also refer the reader to the README.md file in
the code, as well as the training configurations in the configs/experiments folder.

Libraries used in the experiments. We set up our experiments using Python 3.10.12 [112] (For
more information, please refer to the following link http://www.python.org), and made use of the
following libraries: NumPy [44], SciPy [114], PyTorch [89], Seaborn [116], Pandas [71], Matplotlib
[46], CVXPY [30], Wandb [13], Gurobi [43]. Changes, and new code, are published under the MIT
license. To run the code, please, read the attached README file for instructions.

D.1 Bandit Problems

Here, we provide the implementation and evaluation details for the bandit experiments reported in
Section 3.1, covering deterministic, stochastic, and structured settings. Note that for this setting the
observations are simply the observed rewards, i.e., xt = rt.

Model Architecture and Optimization. For all bandit tasks, ICPE uses a Transformer with 3
layers, 2 attention heads, hidden dimension 256, GELU activations, and dropout of 0.1 applied to
attention, embeddings, and residuals (see also appendix C.4 for a description of the architecture).
Layer normalization uses ϵ = 10−5. Inputs are one-hot action-reward pairs with positional encodings.
Models are trained using Adam with learning rates between 1× 10−4 and 1× 10−6, and batch sizes
from 128 to 1024 depending on task complexity.

D.1.1 Deterministic Bandits with Fixed Horizon

Each environment consists of K arms, where K ∈ {4, 6, 8, . . . , 20}. Mean rewards for each arm are
sampled uniformly from [0, 1], and rewards are deterministic (i.e., zero variance). Agents interact
with the environment for exactly K steps and are then required to predict the optimal arm. Success
is measured by the probability of correctly identifying the best arm. We also compute the average
number of unique arms selected during training episodes as a proxy for exploration diversity.

ICPE is compared against three baselines in the deterministic setting: Uniform Sampling, which
selects arms uniformly at random; DQN, a deep Q-network trained directly on environmental rewards
[72]; and I-DPT, which performs posterior sampling using ICPE’s I-network [64]. All methods were
evaluated over five seeds, with 900 environments per seed. 95% confidence intervals were computed
with hierarchical bootstrapping.
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Figure 8: Deterministic bandits: (left) probability of correctly identifying the best action vs. K;
(right) average fraction of unique actions selected during exploration vs. K.
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D.1.2 Stochastic Bandits Problems

In the stochastic Gaussian bandit setting, we evaluate ICPE on best-arm identification tasks with
K ∈ {4, 6, 8, . . . , 14}. Arm means are sampled uniformly from [0, 0.4K], with a guaranteed
minimum gap of 1/K between the top two arms. All arms have a fixed reward standard deviation of
0.5. The target confidence level is set to δ = 0.1.

We compare ICPE against several widely used baselines: Top-Two Probability Sampling (TTPS) [50],
Track-and-Stop (TaS) [36], Uniform Sampling, and I-DPT. For I-DPT, stopping occurs when the
predicted optimal arm has estimated confidence at least 1 − δ. For TTPS and TaS, we apply the
classical stopping rule based on the characteristic time T ⋆(Nt/t; µ̂t) (explained in appendix C.3.1):

t · T ⋆(Nt/t; µ̂t) ≥ log

(
1 + log t

δ

)
.

Each method is evaluated over three seeds, with 300 environments, and 15 trajectories per environment.
95% confidence intervals were computed with hierarchical bootstrapping.
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Figure 9: Results for stochastic MABs with fixed confidence δ = 0.1 and N = 100: (a) average
stopping time τ ; (b) survival function of τ ; (c) probability of correctness Pπ

M∼P(M)(h(Ĥτ ;M) = 1).

Does ICPE learn randomized policies? An intriguing question is whether ICPE is capable of
learning randomized policies. Intuitively, one might expect randomized methods, such as actor-critic
algorithms, to perform better. However, we observe that this is not the case for ICPE. Crucially, the
inherent randomness of the environment, when passed as input to the transformer architecture, already
serves as a source of stochasticity. Thus, although ICPE employs a deterministic mapping (via DQN)
from observed trajectories, these trajectories themselves constitute random variables, rendering the
policy’s output effectively stochastic. To illustrate this, we examine an ICPE policy trained with
fixed confidence (δ = 0.1) in a setting with K = 14 actions (see the two rightmost plots in fig. 10).
By analyzing 100 trajectories from this environment and computing an averaged policy, we clearly
observe how trajectory randomness influences the policy’s outputs. Specifically, exploration intensity
peaks around the middle of the horizon and diminishes as the confidence level increases.
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Figure 10: Statistics of ICPE with fixed confidence on 100 trajectories from a single environment,
with K = 14. From left to right: Total variation error between the average ICPE policy and the
approximate Track and Stop policy; entropy of the average policy of ICPE; probabilities of the
average ICPE policy, with pmax representing the maximum probability and pα the α-quantile.

Does ICPE resembles Track and Stop? In fig. 10 (left figure) we compare an ICPE policy trained
in the fixed confidence setting (δ = 0.1) with an almost optimal version of TaS, that can be easily
computed without solving any optimization problem. Let ∆̂t(a) = µ̂ât

(t) − maxa ̸=ât
µ̂a, where

µ̂a(t) is the empirical reward of arm a in round t and ât = argmaxa µ̂a(t) is the estimated optimal
arm. Then, the approximate TaS policy is defined as

πt(a) =
1/∆̂a(t)∑
b 1/∆̂b(t)

,

with ∆̂ât(t) = mina ̸=ât ∆̂a(t). In the figure we sampled 100 trajectories from a single environment
with K = 14, and computed an average ICPE policy. Then, we compared this policy to the
approximate TaS policy, and computed the total variation. We can see that the two policies are
not always similar. We believe this is due to the fact that ICPE is exploiting prior information on
the environment, including the minimum gap assumption, and the fact that the average rewards are
bounded in [0, 0.4K].
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Figure 11: Correctness Pπ
M∼P(M)(h(Ĥτ ;M) = 1) for stochastic MABs with fixed horizon N = 30.

D.1.3 Bandit Problems with Hidden Information

Magic Action Environments We evaluate ICPE in bandit environments where certain actions
reveal information about the identity of the optimal arm, testing its ability to uncover and exploit
latent structure under the fixed-confidence setting.

Each environment contains K = 5 arms. Non-magic arms have mean rewards sampled uniformly
from [1, 5], while the mean reward of the designated magic action (always arm 1) is defined as
µm = ϕ(argmaxa ̸=am

µa) with ϕ(i) = i/K. The magic action is not the optimal arm, but it
encodes information about which of the other arms is. To control the informativeness of this signal,
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we vary the standard deviation of the magic arm σm ∈ {0.0, 0.1, . . . , 1.0}, while fixing the standard
deviation of all other arms to σ = 1− σm.

ICPE is trained under the fixed-confidence setting with a target confidence level of 0.9. For each
σm, we compare ICPE’s sample complexity to two baselines: (1) the average theoretical lower
bound computed for the problem computed via averaging the result of Theorem B.7 over numerous
environmental mean rewards, and (2) I-IDS, a pure-exploration information-directed sampling
algorithm that uses ICPE’s I-network for posterior estimation. All methods are over 500 environments,
with 10 trajectories per environment. 95% confidence intervals are computed using hierarchical
bootstrapping with two levels.

Beyond the exploration efficiency analysis shown in Figure 5a, we also assess the correctness of
each method’s final prediction and its usage of the magic action. As shown in Figure 12a, both
ICPE and I-IDS consistently achieve the target accuracy of 0.9, validating their reliability under the
fixed-confidence formulation.

Figure 12b plots the proportion of total actions that were allocated to the magic arm across different
values of σm. While both methods adapt their reliance on the magic action as its informativeness
degrades, I-IDS tends to abandon it earlier. This behavior suggests that ICPE is better able to retain
and exploit structured latent information beyond what is captured by simple heuristics for expected
information gain.
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Figure 12: (a) Final prediction accuracy across varying levels of noise in the magic action (σm). Both
ICPE and I-IDS consistently achieve the target confidence threshold of 0.9. (b) Percentage of actions
allocated to the magic arm as a function of σm. ICPE continues to exploit the magic action longer
than I-IDS, suggesting more robust use of latent structure.

We also assess ICPE’s performance in a regret minimization setting. We define an In-Context Explore-
then-Commit variant of ICPE, which explores until the I-network reaches confidence 1 − δ, then
repeatedly selects the estimated optimal action. We compare this policy’s cumulative regret to that of
three standard algorithms: UCB, Thompson Sampling, and IDS, each initialized with Gaussian priors.
For this evaluation, we fix σm = 0.1, σ = 0.9, and δ = 0.01.

Implementation details for I-IDS and In-Context Explore-then-Commit are provided in Sections
C.3.2 and C.3.3 respectively.

Magic Chain Environments To assess ICPE’s ability to perform multi-step reasoning over latent
structure, we evaluate it in environments where identifying the optimal arm requires sequentially
uncovering a chain of informative actions. In these magic chain environments, each magic action
reveals partial information about the next, culminating in identification of the best arm.

We use K = 10 arms and vary the number of magic actions n ∈ {1, 2, . . . , 9}. Mean rewards for
magic actions are defined recursively as:

µij =

ϕ(ij+1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{i1,...,in} µa

)
, if j = n,
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where ϕ(i) = i/K, and the remaining arms have mean rewards sampled uniformly from [1, 2]. All
rewards are deterministic (zero variance).

ICPE is trained under the fixed-confidence setting with δ = 0.99. For each n, five models are trained
across five seeds. We compare ICPE’s average stopping time to the theoretical optimum (computed
via Theorem B.10) and to the I-IDS baseline equipped with access to the I-network. Each model
is evaluated over 1000 test environments per seed. 95% confidence intervals are computed using
hierarchical bootstrapping.

In interpreting the results from Figure 5b, we observe that for environments with one or two magic
actions, ICPE reliably learns the optimal policy of following the magic chain to completion. In these
cases, the agent is able to identify the optimal arm without ever directly sampling it, by exploiting the
structured dependencies embedded in the reward signals of the magic actions. Figure 13 illustrates a
representative trajectory from the two-magic-arm setting, where the first magic action reveals the
location of the second, which in turn identifies the optimal arm. The episode terminates without
requiring the agent to explicitly sample the best arm itself.

Figure 13: Example trajectory in the 2-magic-arm environment. ICPE follows the magic chain: the
first magic action reveals the second, which identifies the optimal arm.

For environments with more than two magic actions, however, ICPE learns a different strategy. As the
length of the magic chain increases, the expected sample complexity of following the chain from the
start becomes suboptimal. Instead, ICPE learns to randomly sample actions until it encounters one of
the magic arms and then proceeds to follow the chain from that point onward. This behavior represents
an efficient, learned compromise between exploration cost and informativeness. Figure 14 shows an
example trajectory from the six-magic-arm setting, where the agent initiates random sampling until it
lands on a magic action, then successfully follows the remaining chain to identify the optimal arm.

Figure 14: Example trajectory in the 6-magic-arm environment. Rather than starting from the first
magic action, ICPE samples randomly until finding a magic action and then follows the chain to the
optimal arm.
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D.2 Semi-Synthetic Pixel Sampling

To evaluate ICPE in a setting that more closely resembles real-world decision-making tasks, we
designed a semi-synthetic environment based on the MNIST dataset [63], where the agent must
adaptively reveal image regions to classify a digit while minimizing the number of pixels observed.
This experiment serves as a proof-of-concept for using ICPE in perceptual tasks where observations
are costly and information must be acquired efficiently.

Environment Details. Each MNIST image is partitioned into 36 non-overlapping 5 × 5 pixel
regions, defining an action space of size K = 36. At each timestep, the agent selects a region to
reveal, progressively unmasking the image. The agent begins with a fully masked image and has a
fixed horizon of H = 12 steps to acquire information and make a prediction.

To prevent overfitting and encourage generalizable policies, we apply strong augmentations at each
episode: random rotations (±30◦), translations (up to 2 pixels), Gaussian noise (N (0, 0.1)), elastic
deformations, and random contrast adjustments. These augmentations ensure that agents cannot
memorize specific pixel layouts and must instead learn adaptive exploration strategies.

Model Architecture and Optimization. Due to the visual nature of the task, we use a convolutional
encoder rather than a transformer. The ICPE critic network combines a CNN image encoder with a
separate action-count encoder. The CNN consists of 3 convolutional blocks with 16 base channels,
followed by max pooling and global average pooling. The action counts (which track how often
each region has been sampled) are passed through a linear embedding layer with 32 output units,
followed by ReLU activation and LayerNorm. The image and action embeddings are concatenated
and processed through two residual MLP layers, producing Q-values over actions. The I-network
shares the same architecture but outputs logits over 10 digit classes.

All models are implemented in PyTorch and trained with Adam using a learning rate of 1× 10−4.
Training is performed over 500,000 episodes using 40 parallel environment instances. We use a
batch size of 128, a replay buffer of size 100,000, and a discount factor γ = 0.999. The Q-network
is updated using Polyak averaging with coefficient 0.01, and the I-network is updated every two
steps using 30 bootstrap batches. To populate the buffer initially, we perform 10 batches of bootstrap
updates before standard training begins. Gradients are clipped to a maximum norm of 2.

Pretraining the Inference Network. To provide stable reward signals and ensure consistency with
baselines, we pretrain a separate CNN classifier to predict digit labels from fully revealed images.
This classifier consists of three convolutional layers with max pooling, followed by two linear layers
and a softmax head. The classifier is trained on the same augmented data used during ICPE training
and is frozen during exploration learning. Its softmax confidence for the correct digit is used as
the reward signal. This setup simulates realistic scenarios in which high-quality predictive models
already exist for fully observed data (e.g., in clinical diagnosis).

Evaluation. We compare ICPE to two baselines: Uniform Sampling, which selects image regions
uniformly at random at each timestep, and Deep CMAB [24], a contextual bandit algorithm that uses
a Bayesian neural network to model p(r | x, a) and performs posterior sampling via dropout.

The Deep CMAB model uses a convolutional encoder to extract image features, which are concate-
nated with a learned embedding of the action count vector. The combined representation is passed
through a multilayer perceptron with dropout applied to each hidden layer. At each decision point, the
agent samples a dropout rate from a uniform distribution over (0, 1) and uses the resulting forward
pass as a sample from the posterior over rewards (Thompson sampling). The reward signal for
each action is computed using the pretrained MNIST classifier: specifically, the increase in softmax
probability for the correct digit class after a new region is revealed.

We train Deep CMAB for 100,000 episodes using Adam optimization. During training, the agent
interacts with multiple MNIST instances in parallel, and updates its model based on the marginal
improvement in confidence after each action. The model learns to maximize this incremental reward
signal by associating particular visual contexts with the most informative actions.
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For each trained model, we sample 1000 test environments and report on (1) the average final
classification accuracy by the pretrained classifier at the end of trajectory, and (2) the average number
of regions used before prediction. Confidence intervals are computed via bootstrapping.

Adaptive Sampling Analysis. To assess whether agents learn digit-specific exploration strategies,
we analyze the distribution of selected image regions across digit classes. For each agent, we compute
pairwise chi-squared tests between all digit pairs, testing whether the distributions of selected regions
are statistically distinguishable.

To ensure sufficient support for the test, we only compare digit pairs that each have at least five
trajectories and remove actions that appear in fewer than five total samples across the two classes. For
each qualifying digit pair, we construct a 2× K̃ contingency table, where K̃ is the number of region
indices that are meaningfully used by either digit. The rows correspond to digit classes, and each
column counts how many samples from each class selected the corresponding region at least once.

We apply the chi-squared test of independence to each contingency table. A low p-value indicates that
the region selection distributions for the two digits are significantly different, suggesting digit-specific
adaptation. By comparing the number and strength of significant differences across agents, we
evaluate the extent to which each method tailors its exploration policy to the structure of the input
class.

We visualize the resulting pairwise p-values in Figure 15 using a heatmap. Each cell shows the
chi-squared test p-value between a pair of digits. Lower values (blue cells) indicate greater divergence
in sampling behavior, and thus more adaptive and digit-specific strategies.
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Figure 15: Pairwise chi-squared test p-values for region selection distributions across digit classes.
Lower values indicate more statistically distinct exploration behaviors.

For further intuition into the sampling process, Figure 16 shows a representative example of the ICPE
pipeline progressively revealing image regions and correctly classifying the digit ‘2’. This highlights
the interplay between exploration and inference as the agent strategically uncovers informative
regions to guide its decision.

To illustrate the impact of input corruption, Figure 17 presents an example where ICPE fails to
correctly classify the digit. Although the agent successfully reveals the central body of the digit, the
applied augmentations distort the image to the extent that the digit becomes visually ambiguous. In
this case, the agent incorrectly predicts an ‘8’ when the true label is a ‘9’, underscoring the challenge
introduced by realistic image corruptions in this setting.

D.3 MDP Problems: Magic Room

The Magic Room is a sequential decision-making environment structured as a K ×K grid-shaped
room containing four doors, each positioned at the midpoint of one of the four walls (top, bottom,
left, right). At the beginning of each episode, exactly one of these doors is randomly chosen to be the
correct door (H⋆), unknown to the agent.

The agent’s goal is to identify and pass through the correct door. Each episode lasts for a maximum
of N = K2 time steps, during which the agent navigates the grid, observes clues, and attempts
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True Image
Step 1

Prediction: 4, Confidence (0.11)
Step 2

Prediction: 1, Confidence (0.17)
Step 3

Prediction: 1, Confidence (0.33)

Step 4
Prediction: 5, Confidence (0.74)

Step 5
Prediction: 5, Confidence (0.78)

Step 6
Prediction: 1, Confidence (0.47)

Step 7
Prediction: 1, Confidence (0.47)

Step 8
Prediction: 2, Confidence (0.99)

Step 9
Prediction: 2, Confidence (1.00)

Step 10
Prediction: 2, Confidence (1.00)

Step 11
Prediction: 2, Confidence (1.00)

Figure 16: Illustrative example of the ICPE agent revealing regions of an MNIST digit and correctly
classifying it as a ‘2’. The sequence shows the intermediate revealed image and predicted label at
each timestep.

True Image
Step 1

Prediction: 4, Confidence (0.11)
Step 2

Prediction: 3, Confidence (0.19)
Step 3

Prediction: 5, Confidence (0.19)

Step 4
Prediction: 5, Confidence (0.28)

Step 5
Prediction: 4, Confidence (0.39)

Step 6
Prediction: 4, Confidence (0.47)

Step 7
Prediction: 9, Confidence (0.53)

Step 8
Prediction: 9, Confidence (0.56)

Step 9
Prediction: 8, Confidence (0.76)

Step 10
Prediction: 8, Confidence (0.62)

Step 11
Prediction: 8, Confidence (0.64)

Figure 17: Example of an incorrect classification due to aggressive data augmentations. Although the
agent reveals the central region of the digit, the distortions cause it to misclassify a ‘9’ as an ‘8’.

to determine the correct door. Two binary clues, each randomly assigned a location within the
sub-grid [1, 1]× [K − 1,K − 1], are placed in the room at the start of each episode. Each clue has a
binary value, randomly set to either −1 or 1. Collecting both clues provides sufficient information to
unambiguously determine the correct door, given that the agent has learned the mapping from clue
configurations to door identity.

At each time step t, the agent observes the state vector:

xt = (zt, yt, c1,t, c2,t, rt),

where:

• (zt, yt) are the agent’s current coordinates on the grid.
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C1

C2

Start

Figure 18: Magic room: example of trajectory of the
icpe agent.

• ci,t ∈ {−1, 0, 1} indicates the status of clue i: it equals 0 if clue i has not yet been observed
by the agent, or it equals either −1 or 1 if the clue has been observed.

• rt ∈ {0, 1} represents the reward received at time t. Specifically, upon passing through a
door:

– If the chosen door is the correct one, the agent receives a reward of 1 with probability
1
4 , and a reward of 0 otherwise.

– If the chosen door is incorrect, the agent always receives a reward of 0.

An episode terminates when the agent chooses to pass through any of the four doors, irrespective of
correctness, or when the horizon N = K2 steps is reached. Upon termination, the agent is required
to explicitly select which door it believes to be the correct one.

Method Average Correctness Average Stopping Time

K = 6 K = 8 K = 6 K = 8

ICPE 0.953 (0.940, 0.968) 0.948 (0.941, 0.954) 13.721 (13.298, 14.165) 27.704 (27.296, 28.086)

Table 1: Magic Room: correctness and stopping times (mean and 95% CI) for K = 6 and K = 8.

This setup provides two distinct strategies for the agent:

1. Luck-based strategy: The agent directly attempts to pass through a door, observing the
reward to determine correctness. A positive reward conclusively indicates the correct door;
a zero reward provides no additional information.

2. Inference-based strategy: The agent efficiently navigates the room, locates both clues to
deduce the identity of the correct door, and subsequently exits through that door.

Thus, optimal behavior requires an effective exploration of the room to finish as quickly as possible.
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Figure 19: Magic room environment. Left: survival function P(τ > t) for K = 6 and K = 8. Right:
density of the correctness for K = 6 and K = 8.
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Figure 20: Magic room environment. Relationship among agent correctness, the number of clues
observed, and the stopping time.

We trained ICPE on 3 seeds, using the fixed confidence setting (disabling the stopping action) using
δ = 0.05 and evaluated the policies on 4500 episodes for K = 6 and K = 8. In table 1 are shown
the statistics of the average correctness and of the stopping time.

In fig. 18 we can see a sample trajectory taken by ICPE. Starting from the middle of the room, ICPE
follows a path that allows to find the clues C1, C2 in the green area. As soon as the second clue is
found, it goes through the closest door.

In fig. 19, we present the survival functions of the stopping time τ for environments with grid sizes
K = 6, 8, alongside the corresponding correctness densities. Lastly, fig. 20 illustrates the relationship
among agent correctness, the number of clues observed, and the stopping time. Specifically, smaller
stopping times correlate with fewer observed clues, leading to lower correctness. Conversely, when
the agent observes both clues, it consistently selects the correct door, demonstrating that it has
effectively learned the association between the clues and the correct hypothesis.

D.4 Exploration on Feedback Graphs

In the standard bandits setting we studied in Section 3.1, the learner observes the reward of the selected
action, while in full-information settings, all rewards are revealed. Feedback graphs generalize this
spectrum by specifying, via a directed graph G which additional rewards are observed when a
particular action is chosen. Each node corresponds to an action, and an edge from u to v means that
playing u may reveal feedback about v.

While feedback graphs have been widely studied for regret minimization [68], their use in pure
exploration remains relatively underexplored [98]. We study them here as a challenging and structured
testbed for in-context exploration. Unlike unstructured bandits, these environments contain latent
relational structure and stochastic feedback dependencies that must be inferred and exploited to
explore efficiently.

Formally, we define a feedback graph as an adjacency matrix G ∈ [0, 1]K×K , where Gu,v denotes
the probability that playing action u reveals the reward of action v. The learner observes a feedback
vector r ∈ RK , where each coordinate is revealed independently with probability Gu,v:

rv ∼
{
N (µv, σ

2), with probability Gu,v,

no observation, otherwise.

This setting allows us to test whether ICPE can learn to uncover and leverage latent graph structure
to guide exploration. As in the bandits setting, we have a finite number of actions A = {1, . . . ,K},
corresponding to the actions (or vertices) in a feedback graph G. The learner’s goal is to identify the
best action, where H⋆ = argmaxa µa. At each time step t, the observation is the partially observed
reward vector xt = rt.

We evaluate performance on best-arm identification tasks across three representative feedback graph
families:
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• Loopy Star Graph (Figure 21): A star-shaped graph with self-loops, parameterized by
(p, q, r). The central node observes itself with probability q, one neighboring node with
probability p, and all others with probability r. When p is small, it may be suboptimal to
pull the central node, requiring the agent to adapt its strategy accordingly.

• Ring Graph (Figure 22): A cyclic graph where each node observes its right neighbor with
probability p and its left neighbor with probability 1 − p. Effective exploration requires
reasoning about which neighbors provide more informative feedback.

• Loopless Clique Graph (Figure 23): A fully connected graph with no self-loops. Edge
probabilities are defined as:

Gu,v =


0 if u = v,
p
u if v ̸= u and v is odd,
1− p

u otherwise.

Here, informativeness varies systematically with action index, requiring the learner to infer
which actions are most useful.

These environments offer a diverse testbed for evaluating whether ICPE can uncover and exploit
complex feedback structures without direct access to the underlying graph.

Fixed-Horizon. For each graph family, mean rewards were sampled uniformly from [0, 1] with
fixed variance 0.2, using hyperparameters: (p, q, r) = (0.25, 0.3, 0.35) for the loopy star graph,
p = 0.3 for the ring, and p = 0.5 for the loopless clique. We considered both small (K = 5, H = 25)
and large (K = 10, H = 50) environments.

ICPE was compared to three baselines: Uniform Sampling, EXP3.G [94], and Tas-FG [98]. All
methods performed maximum likelihood inference at the end of the trajectory. Table 2 reports the
average probability of correctly identifying the best arm.

Algorithm Loopy Star Loopless Clique Ring
Small Large Small Large Small Large

ICPE 0.88 ± 0.01 0.59 ± 0.02 0.95 ± 0.01 0.79 ± 0.04 0.79 ± 0.01 0.51 ± 0.03
TasFG 0.82 ± 0.01 0.73 ± 0.02 0.84 ± 0.01 0.83 ± 0.01 0.70 ± 0.02 0.56 ± 0.02

EXP3.G 0.66 ± 0.02 0.40 ± 0.01 0.84 ± 0.01 0.78 ± 0.02 0.77 ± 0.02 0.52 ± 0.02
Uniform 0.73 ± 0.02 0.60 ± 0.02 0.86 ± 0.01 0.79 ± 0.02 0.78 ± 0.02 0.62 ± 0.02

Table 2: Probability of correctly identifying the best arm. Small environments: K = 5, H = 25;
Large: K = 10, H = 50. Results reported as mean ± 95% CI.

ICPE outperforms all baselines in small environments across all graph families, highlighting its ability
to learn efficient strategies from experience. Performance slightly degrades in larger environments,
likely due to difficulty in credit assignment over long horizons. Still, ICPE remains competitive,
validating its capacity to generalize across graph-structured settings.
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Fixed-Confidence. We next tested ICPE in a fixed-confidence setting, using the same graph families
but setting the optimal arm’s mean to 1 and all others to 0.5 to facilitate faster convergence. ICPE
was trained for K = 4, 6, . . . , 14 with a target error rate of δ = 0.1. We compared it to Uniform
Sampling, EXP3.G, and Tas-FG using a shared stopping rule from [98].
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Figure 24: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b)
Loopless Clique, and (c) Ring graphs.

As shown in Figure 24, ICPE consistently achieves significantly lower sample complexity than all
baselines. This suggests that ICPE is able to meta-learn the underlying structure of the feedback
graphs and leverage this knowledge to explore more efficiently than uninformed strategies. These
results align with expectations: when environments share latent structure, learning to explore from
experience offers a substantial advantage over fixed heuristics that cannot adapt across tasks.

D.5 Meta-Learning Binary Search

To test ICPE’s ability to recover classical exploration algorithms, we evaluate whether it can au-
tonomously meta-learn binary search.

We define an action space of A = {1, . . . ,K}, where K is the upper bound on the possible location
of the hidden target H⋆ ∼ A. Pulling an arm above or below H⋆ yields a observation xt = −1 or
xt = +1, respectively—providing directional feedback.

We train ICPE under the fixed-confidence setting for K = 23, . . . , 28, using 150,000 in-context
episodes and a target error rate of δ = 0.01. Evaluation was conducted on 100 held-out tasks per
setting. We report the minimum accuracy, mean stopping time, and worst-case stopping time, and
compare against the theoretical binary search bound O (log2 K).

Number of Actions (K) Minimum Accuracy Mean Stopping Time Max Stopping Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 3: ICPE performance on the binary search task as the number of actions K increases.

As shown in Table 3, ICPE consistently achieves perfect accuracy with worst-case stopping times that
match the optimal log2(K) rate, demonstrating that it has successfully rediscovered binary search
purely from experience. While simple, this task illustrates ICPE’s broader potential to learn efficient
search strategies in domains where no hand-designed algorithm is available.

54


	Introduction
	Related Work

	Learning to Explore: In-Context Pure Exploration
	Problem Formulation
	[algo:icpefixedconfidence]ICPE: In-Context Pure Exploration
	Fixed Confidence Setting


	Empirical Evaluation
	Bandit Problems
	Semi-Synthetic Experiment: Pixel Sampling for MNIST Classification

	Conclusions
	Acknowledgments
	Limitations and Broader Impact
	Extended Related Work
	Theoretical Results
	Suboptimality of IDS
	Sample Complexity Bounds for MAB Problems with Fixed Minimum Gap
	Sample Complexity Lower Bound for the Magic Action MAB Problem
	Sample Complexity Bound for the Multiple Magic Actions MAB Problem

	Algorithms
	[algo:icpefixedconfidence]ICPE with Fixed Confidence
	[algo:icpefixedconfidence]ICPE with Fixed Horizon
	Other Algorithms
	Track and Stop
	I-IDS
	In-Context Explore-then-Commit
	I-DPT

	Transformer Architecture

	Experiments
	Bandit Problems
	Deterministic Bandits with Fixed Horizon
	Stochastic Bandits Problems
	Bandit Problems with Hidden Information

	Semi-Synthetic Pixel Sampling
	MDP Problems: Magic Room
	Exploration on Feedback Graphs
	Meta-Learning Binary Search


